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Abstract—Current treatments for paraplegia induced by spinal
cord injury (SCI) are often limited by the severity of the injury.
The accompanying loss of sensory and motor functions often
results in reliance on wheelchairs, which in turn causes reduced
quality of life and increased risk of co-morbidities. While brain-
computer interfaces (BCIs) for ambulation have shown promise
in restoring or replacing lower extremity motor functions, none so
far have simultaneously implemented sensory feedback functions.
Additionally, many existing BCIs for ambulation rely on bulky
external hardware that make them ill-suited for non-research set-
tings. Here, we present an embedded bi-directional BCI (BDBCI),
that restores motor function by enabling neural control over a
robotic gait exoskeleton (RGE) and delivers sensory feedback via
direct cortical electrical stimulation (DCES) in response to RGE
leg swing. A first demonstration with this system was performed
with a single subject implanted with electrocorticography elec-
trodes, achieving an average lag-optimized cross-correlation of
0.80±0.08 between cues and decoded states over 5 runs.

Index Terms—brain-computer interface, bi-directional brain-
computer interface, electrocorticography, direct cortical electrical
stimulation, spinal cord injury

I. INTRODUCTION

Individuals with paraplegia after spinal cord injury (SCI)
typically experience a loss of motor and sensory function in
the lower extremities. While therapies exist to compensate
for these neurological deficits, the severity of the SCI may
limit their effectiveness. This often leads to a reliance on
wheelchairs, which can cause co-morbidities (heart disease,
osteoporosis, pressure ulcers [1]) that result in reduced pro-
ductivity as well as lower quality of life. As such, people with
paraplegia place ambulation restoration as a top rehabilitation
priority [2]. Brain-computer interfaces (BCIs) promise to
fulfill this unmet need by re-establishing brain control over
paralyzed extremities. An example of such a BCI is the non-
invasive system described in [3], which enabled a subject
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with paraplegia wearing an electroencephalography (EEG) cap
to control functional electrical stimulators (FESs) attached to
their leg muscles. Recently, Benabid et al. [4] developed an
invasive BCI system utilizing the superior spectral/temporal
properties of electrocorticography (ECoG) signals [5] to allow
a subject with tetrapelgia to walk by controlling a robotic gait
exoskeleton (RGE).

Despite these advances, a key shortcoming for existing BCIs
for ambulation is that they lack somatic sensory feedback
and instead rely primarily on visual feedback for closed-
loop control. Non-invasive BCI in particular have no readily
available method for restoring somatic sensory feedback. In
contrast, invasive BCI can potentially incorporate artificial
somatic sensation via direct cortical electrical stimulation
(DCES) of sensory areas [6], [7]. These “bi-directional” BCI
(BDBCI) restore both motor and sensory pathways, thereby
achieving more biomimetic sensorimotor restoration and po-
tentially enhancing overall BCI control [8]. Furthermore, in
order to enable long-term, non-research usage for BDBCIs,
future designs will likely need to be fully-implantable. This
necessitates an embedded systems approach, instead of relying
on bulky external hardware that many existing lower extremity
BCI systems depend on to achieve real-time decoding [3], [4].

To address these issues, we have developed an ECoG-
based, embedded BDBCI system combining real-time motor
decoding [9] with DCES for artificial sensory feedback [10].
While aspects of this system have been tested on the bench-
top [10], the integration of decoding and stimulation functions
alongside RGE control have yet to be demonstrated. In this
work, we describe the performance of a BDBCI-RGE system
in a human subject implanted with ECoG electrodes. This
includes the ability to decode leg motor activity in real time
from primary motor cortex (M1) ECoG signals, actuate RGE
stepping according to the decoded intent, and deliver DCES
to the primary sensory cortex (S1) to elicit artificial leg



Fig. 1. BDBCI-RGE system overview. Detailed explanation in Section II-A.

sensory feedback in response to RGE leg swing. This study
represents a first-of-a-kind demonstration of a BDBCI system
for ambulation.

II. METHODS

A. System Overview

The BDBCI-RGE system (Fig. 1) consists of the BDBCI,
an RGE (Ekso-GT, Ekso Bionics, Richmond, CA, USA), and
an RGE interface. Data from ECoG electrodes over M1 were
acquired by the BDBCI, which then performed a binary classi-
fication on those data to determine the decoded state (“Move”
or “Idle”). These states were then wirelessly transmitted to
the RGE interface, which would trigger the RGE to step if the
received state was “Move”. Inertial measurement units (IMUs)
attached to the RGE recorded leg kinematic data, which were
used by the RGE interface to instruct the BDBCI to stimulate
S1 in response to leg swing to elicit sensory feedback.

B. Hardware Design

The BDBCI was implemented on a custom designed PCB
(See [10]). Briefly, onboard microcontrollers (48 MHz, Mi-
crochip, Chandler, AZ) executed all system functions, namely
acquisition, wireless communication, decoder model genera-
tion, online decoding, and DCES. Neural data was acquired
from up to 16 ECoG electrodes (16 recording channels with
a reference electrode) at 500 Hz using an amplifier array
integrated circuit (Intan Technologies, Santa Monica, CA).
Wireless transceivers (RFM98, HOPE Microelectronics, Xili,
ShenZhen, China) enabled communication with a base station
computer to log experimental data. A custom GUI on the base
station computer was used to initiate or abort online decoding.

The custom GUI was also used to set stimulation param-
eters. Here, operators could select the bipolar stimulation
channel (any pair of electrodes) and waveform properties
(pulse train frequency, anodic/cathodic pulse width, current
amplitude, pulse train duration). The BDBCI stimulator could
then output biphasic square-pulse trains with the chosen pa-
rameters. After parameters were set, the stimulation could
then be triggered either manually from the GUI (for cortical

mapping, see Section II-E) or in response to leg swings
detected by the RGE interface.

The RGE interface was comprised of a microcontroller and
radio transceiver (both same as above) that enabled wireless
communication with the BDBCI. A servomotor connected to
the RGE interface depressed the “Step” button on the RGE’s
controller upon receipt of a decoded ”Move” state from the
BDBCI. The RGE interface was also connected to two 6-
axis IMUs (TDK Corporation, Tokyo, Japan), which were
mounted on the “ankles” of the RGE legs. The angular velocity
derived from the IMU data was used to detect the initiation
and completion of each RGE step. Based on this information,
the RGE interface wirelessly instructed the BDBCI to deliver
DCES during leg swing to elicit sensory feedback.

C. ECoG Procedures and Online Decoding Model Generation

Subjects were recruited from a population of patients un-
dergoing ECoG implantation for epilepsy surgery evaluation
with electrode coverage of M1 and S1 areas with expected leg
representation. Electrodes with power modulation in the µ-β
(8–25 Hz) and/or high-γ (80–160 Hz) bands in response to leg
motor movement were plugged into the BDBCI. Specifically,
we sought electrodes exhibiting µ-β desynchronization and/or
high-γ synchronization during leg movement [5]. To identify
such electrodes, the subject was asked to perform alternating
periods of idling and leg movement while ECoG data from
all electrodes were recorded using an ICU neural monitoring
system (Natus® QuantumTM, Natus Medical Incorporated,
Pleasanton, CA). These data were then processed in MATLAB
and visually inspected to identify the subset of electrodes
exhibiting µ-β and/or high-γ modulation.

Prior to real-time BDBCI operation, an online decoding
model must be generated by first collecting ECoG signals
from the previously identified electrodes during idling and
leg movement behavior and then calculating the corresponding
feature extraction matrices [9]. These matrices were used in
real time to obtain features on which a binary state classifier
can be applied to obtain a decoded state. A training data
collection protocol was implemented on the BDBCI, which
was initiated via the GUI. During this protocol, the subject
was seated in the ICU bed (configured into an upright,
seated position) and was prompted by a screen displaying
“Idle” or “”Move” cues that alternated every 10 seconds for
a total of 80 seconds. The subject was instructed to hold
still and relax when “Idle” was displayed, and to perform a
seated “marching” motion with both legs when “Move” was
displayed. The BDBCI acquired and saved the ECoG signals
in onboard memory for online decoding model generation.

To calculate the feature extraction matrices from the training
data, the data was first common-average referenced. Each
”Move” and ”Idle” trial was then subdivided into non-
overlapping 750 ms windows. For each window and channel,
the average power in the µ-β and the high-γ band was
calculated. These powers were concatenated across the two
bands and channels, nominally resulting in 2×16 data. These
32-dimensional data were then processed using a class-wise



principal component analysis (cPCA) [11]. This produced a
cPCA matrix for each class (“Idle” or “Move”) that reduced
the dimension of the data. Linear discriminant analysis (LDA)
was then applied to enhance the separability between the two
classes [12], [13], as well as to further reduce the dimension
of the data to a one-dimensional feature. The combined cPCA-
LDA feature extraction matrix for each class was then saved
onboard for use in real-time decoding.

D. Real-Time Decoding and Online Model Validation

When performing real-time decoding, the BDBCI acquires
data in 250 ms common-average referenced windows. The
decoder then calculates the µ-β and high-γ powers for each
channel and averages these over the four most recent windows.
The saved cPCA-LDA matrices then reduce the dimension of
the data to a one-dimensional feature for each class. A binary
Bayesian classifier [13] is then applied to this feature to select
the decoded state for the most recent data window.

We used brief real-time decoding experiments to validate the
online decoding model. Specifically, we instructed the subject
to follow “Idle” and “Move” cues that alternated every 10
seconds for a total of 80 seconds while the BDBCI decoded
the ECoG data in real time. The resulting decoded states and
corresponding cues were simultaneously logged by the base
station computer. The performance of online decoding models
were then evaluated by calculating the lag-optimized cross-
correlation between the decoded state and the cues [3], [14].

E. Sensory Stimulation Mapping Procedure

Cortical stimulation mapping was used to find stimulation
parameters with sensory responses. Adjacent pairs of ECoG
electrodes in S1 were sequentially connected to the BDBCI
to form bipolar stimulation channels. For each channel, stim-
ulation was delivered via the GUI using 1 s pulse trains (250
µs/phase). Pulse train frequency and current amplitude were
varied from 50 to 300 Hz and 2 to 10 mA, respectively, until
a response was elicited or the maximum value was reached.
For each parameter set, the subject was asked for a verbal
description of any elicited sensations. We documented those
parameter sets eliciting sensation in the leg contralateral to
ECoG implantation. Ultimately, we designated one parameter
set for BDBCI operation.

F. Online BDBCI-RGE Validation

Once the online decoding model was generated (Sec-
tion II-C) and stimulation parameters were chosen (Sec-
tion II-E), the subject proceeded to the BDBCI-RGE walking
task. Here, an experimenter was placed in the RGE in the
subject’s view, while the BDBCI decoded walking states from
the subject in real time (similar to Section II-D). Note that in
the BDBCI-RGE walking task, the BDBCI suspends acqui-
sition during RGE leg swing to avoid electrical interference
from stimulation. The subject remained in the ICU bed (see
Fig. 2) while following “Idle” or “Move” cues that alternated
every ∼25 s for a total of ∼125 s. The decoded states were
wirelessly transmitted to the RGE for real-time control. The

Fig. 2. BDBCI-RGE walking task. Subject is connected to BDBCI (off-
screen) and remains in the ICU bed while following displayed cues to
wirelessly control the RGE in real time.

Fig. 3. Coregistration of ECoG electrodes and subject’s brain segmented from
post-implant CT image and pre-implant MR image, respectively. Approximate
locations of the pre-central sulcus (blue) and central sulcus (red) delineate
the M1 and S1 cortices. (Teal): electrodes plugged to the BDBCI for
motor decoding. (Yellow boxes): Stimulation channels with right leg sensory
responses. (Orange): stimulation channel used for BDBCI-RGE task. (Dark
grey): unplugged electrodes.

subject also received DCES with the predetermined parameters
(Section II-E) in response to RGE leg swing (Section II-B).
This BDBCI-RGE walking task was repeated for 5 runs.
Using the logged decoded state and cue data, the online
BDBCI performance was evaluated for each run as described
in Section II-D.

III. RESULTS

A. ECoG Subject Details

This study was approved by the IRB of the University
of California, Irvine and the Rancho Los Amigos National
Rehabilitation Center. One subject (age 22, M), undergoing
epilpesy surgical evaluation with ECoG implanted over the



Fig. 4. Spatial weights for cPCA-LDA feature extraction matrices color-
coded and mapped to ECoG electrode positions. Only electrodes plugged
to BDBCI for motor decoding (teal) are given values, unused electrodes
(grey) are assigned a value of zero. Values between electrodes are linearly
interpolated. Electrodes with larger weight values contain features that are
more relevant to the online decoding model.

left M1 and S1 areas with expected leg representation (Fig. 3),
provided written informed consent to participate in the study.
Following the protocol described in Section II-C, we chose 15
electrodes in M1 for motor decoding (see Fig. 3). MG63 and
MG64 were used as reference and ground, respectively.

B. Online Decoding Model Generation

An online decoding model was built as described in Sec-
tion II-C. Fig. 4 shows the spatial weights of the resulting
combined cPCA-LDA feature extraction matrices, illustrat-
ing electrodes containing salient features for decoding. More
specifically, MG18 and MG12 contained salient features in
the µ-β band for both “Idle” and “Move” states. Similarly,
MG10 contained salient features in the high-γ band for both
states. Naturally, these electrodes exhibited modulation in
the corresponding bands (Fig. 5) and formed the basis for
neural walking control. An online validation (without RGE or
stimulation) yielded a lag-optimized cross-correlation between
decoded states and cues of 0.81 (decoded state lag of 1 s).

C. Stimulation Mapping Results

Stimulation mapping was performed over the electrodes in
the first three rows of the medial-posterior quadrant of the
ECoG grid, as these electrodes were expected to be closest to
the leg sensory area. Stimulation parameters that elicited right
leg sensory responses and the subject’s verbal descriptions are
reported in Table I. Though some motor responses (involuntary
movement) were also elicited, channels with motor responses
at any waveform parameters were excluded. Ultimately, stim-
ulation channel MG51-59 (6.2 mA current amplitude, 300 Hz
pulse train frequency, 250 µs anodic/cathodic pulse width) was
chosen for the BDBCI-RGE walking task.

D. BDBCI-RGE Walking Task Results

The performance results for the five online decoding runs
of the BDBCI-RGE walking task are summarized in Table II.
An average lag-optimized cross-correlation between cues and

Fig. 5. Representative 1-Hz power envelopes exhibiting in-band modulation
from decoder training data. Weight values (Fig. 4) indicate MG18 and MG10
contained features salient for decoding. (Top): µ-β modulation on MG18: Trial
median power generally increases during “Idle” relative to “Move”. (Bottom):
high-γ modulation on MG10: Trial median power increases during “Move”
relative to “Idle”.

TABLE I
ELICITED SENSORY RESPONSES

Stimulation
Channel

Amplitude
(mA)

Pulse Train
Frequency
(Hz)

Sensation
Location
(Right Leg)

Reported
Sensation

MG49-57 9.9 100 Big Toe Tingling
MG50-58 7.4 300 Heel Tingling
MG51-59 6.2 300 Heel Tingling
MG43-51 6.9 200 Heel Tingling

decoded state of 0.80 ± 0.08 was achieved, which is com-
parable to the decoding performance without the RGE or
stimulation (Section III-B). With the exception of Run #4, all
runs exhibited maximum correlation at 0 s lag. The excessive
lag in Run #4 was caused by falsely decoded ”Move” states
during ”Idle” cues. Fig. 6 visualizes one of the online decoding
runs, illustrating the concurrence between cues and decoded
state, as well as between step and stimulation events. Imprecise
synchronization between computer and BDBCI clocks led to
a few reports of stimulation onset preceding step initiation,
however the two events were still largely one-to-one.

Fig. 6. Online decoding for Run #2 for BDBCI-RGE walking task. Colored
blocks for cue and decode traces indicate “Move” periods. Colored blocks
for step trace indicate duration of RGE step as extracted from video. Colored
blocks for stimulation trace indicate stimulation is being delivered. Cues and
decoded state are generally well correlated for this run, except for a period
of decoded move causing two steps in the last “Idle” trial.



TABLE II
BDBCI-RGE ONLINE DECODING PERFORMANCE

Run # 1 2 3 4 5

Max X Corr. 0.88 0.90 0.76 0.72 0.76
Lag (s) 0 0 0 8 0

IV. DISCUSSION

This study represents a first demonstration of the feasibility
of BDBCI for human ambulation. Notably, we implemented
DCES for artificial sensory feedback alongside real-time neu-
romotor BDBCI control, which the subject quickly established
within 3 days. While examples of BDBCI systems already
exist for the upper extremities [8], our system marks the first
BDBCI for lower extremity applications.

Our system is also the first embedded system BDBCI for
ambulation. An embedded system approach is critical for the
implementation of BDBCI in a fully-implantable form factor,
which will facilitate long-term usage of BDBCIs outside of a
research setting. Whereas most invasive BCIs are dependent
on large external hardware, our system exclusively utilizes
onboard hardware to perform real-time decoding and DCES
functions. Note that the base station computer is not necessary
for online decoding, as it primarily serves to enable experi-
mental procedures. Benabid et. al [4] and Lorach et. al [15]
employed an implantable embedded system [16] to acquire and
transmit neural information for their lower-extremity BCIs, but
relied on body-mounted laptops/computers to perform decod-
ing computations. Additionally, this implant was designed to
fit to the lateral convexity of the brain, which may prove to be
a limitation as leg/gait representation is anatomically located in
the inter-hemispheric space [5]. Though our study also utilized
ECoG grids implanted on the cortical convexity, we intend
to use inter-hemispheric grids in actual SCI patients in the
future. Since leg representation in the inter-hemispheric space
is richer, this could potentially optimize the performance of
leg motor decoding (i.e. to surpass the performance in EEG-
BCI [14], [17]) and elicit more naturalistic leg sensations.

Future work will seek to test our BDBCI-RGE system with
SCI subjects with paraplegia. Ideally, SCI subjects will be
placed in the exoskeleton for these tests. We will also pursue
system optimizations to improve data logging and online
operation. For example, decoding delays due to interleaving
of acquisition and stimulation may have contributed to subop-
timal decoding performance. This could be avoided by using
artifact-suppressing hardware [18] and digital algorithms [19]
to enable full-duplex bi-directional operation.
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