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What is a brain-computer interface (BCI)?

• BCI is a direct communication pathway between human brain and a 
computer device.
• Reads signals from the brain

• Decodes brain signals into intentions

• Commands an output device
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BCI
Brain signals Device

Control 

Commands



Overview of this presentation

1. Introduction and background

2. High-performance EEG-based BCI applications
1. BCI Spelling device

2. BCI Gait project

3. Conclusions and future works
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Introduction & background
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What BCI can do

Normal people can control their muscles 
by sending control signals down the 
spinal cord.
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Image from: Cedars-Sanai

People with injuries to their brain or 
spinal cord may lose control of their own 
limbs and body.

A BCI can bypass the damaged nerves 
and directly control the limbs via a 
prosthesis or exoskeleton.

BCI



What BCI can do
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Motivation
• Spinal cord injury 350,000 (US), 25,000 new cases / year.*

• Healthcare: $40.5 billion p.a.
• Society: $306 billion p.a.

• Wheelchair dependence leads to:
• Cardiovascular diseases
• Diabetes
• Osteoporosis
• Muscular atrophy
• Pressure ulcers

• Stroke >7 million (US), 800,000 new cases / year.**

• Healthcare: $30 billion p.a.

• BCIs can potentially help them reduce reliance on caregivers, reduce medical 
costs

*National Spinal Cord Injury Statistical Center (NSCIS). Spinal cord injury facts and figures at a glance, 2013.

**Rogers et al, American Heart Association.
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How BCI works

Training 
Database
Training 

Database
Training 

Database



Training paradigms

• User-training:
• Users are asked to learn how to change the amplitudes of their brain wave 

rhythms

• 2-3 weeks, if not months training required

• Usually not intuitive

• Computer-training:
• Users are asked to perform intuitive mental imagery or attempted movement

• Short training time (10-20 minutes) required
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Control paradigms
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(Asynchronous BCI)

THE QUICK B

Letter B entered.

THE QUICK 

Do you want to type 
the letter

B    ?

(Synchronous BCI)



Limitations of non-invasive EEG-based BCIs
1. Slow speed (< 1 bit/s)

2. Unintuitive operation (e.g. imagine foot and 
tongue movements to operate hand prosthesis)

3. Extensive training procedure (e.g. months)

4. Sensitive to artifacts

Potential solutions: Novel signal processing and 
pattern recognition techniques can

1. Improve BCI speed (> 3 bits/s)

2. Provide intuitive operation

3. Shorten the training time (15 minutes)
11

∼20 seconds to 
type 1 letter

“Several months” 
of training



BCI Speller
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P300 Speller

• Farwell and Donchin (1988)

• Based on the visual oddball event-
related potential (ERP) paradigm.

• Oddball = Rare and wanted object.

• ERP is an EEG response to a stimulus. 
• Weak and difficult to discern on a single-trial 

basis

• Obtained by averaging many identical trials

• P300 wave

13Sellers 2006

Electroencephalography
(EEG)



P300 Speller

Essentially, the computer “probes” the 
human brain with this question: 

Is the letter you want in this group?

The only signals the brain can respond are:

YES

NO

14

Rows and Columns paradigm in 
Farwell & Donchin (1988), Sellers (2000), etc.



P300 Speller
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P300 Speller

Random groups

Biased random

Single-trial

Dictionary

Frequencies of letters and others characters in English



Our BCI Speller

• Uses a combination of attention 
(P3a), oddball (P300/P3b), and 
visual search (N200/N2c) signals

• Does not expect any particular 
waveforms, completely data-
driven

• Makes a decision based on only 
one trial of data

17
100ms 400ms Red = oddball
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Experiment setup
1. Human subject

2. EEG cap, 8 chan. (~10 minutes)

3. Training procedure (6-7 minutes)

4. Computer builds a classifier

5. Online control



Equipment

• EEG cap: NeuroScan Quik-Cap with Ag/AgCl electrodes 
(Compumedics USA, Charlotte, NC)

• EEG reference: Ear clip with Ag/AgCl electrode 
(Compumedics USA)
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MP150 DAQ
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MP150 UIM100C EEG100C amplifier modules

Gain

alpha, 
filters

Shield
Vin+
Gnd
Vin-
Shield

EEG amplifiers: EEG100C (Biopac Systems, Goleta, CA)
EEG data acquisition device (DAQ): MP150 (Biopac Systems)



• Comprises 10 mini-sessions

• In each 30-s mini-session, subject 
is asked to pay attention to one 
character from the following
A G < > Y D V 0 * K

• This character is called the 
“oddball” or the “target”

• 8-10 s pause between mini-
sessions

• Hence 6-7-minute training time

21

Training procedure
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Timing terminology for stimulations

A12

Stimulus 
onset

Stimulus 
offset

B34 C56

Stimulus duration

Inter-trial interval (ITI)

Stimulation 
ON

Stimulation 
OFF

3 different ITIs are offered:
• 400 ms (slow speed)
• 240 ms (medium speed)
• 160 ms (fast speed)

(For our BCI-Speller, 
always 60% of the ITI)

time



• EEG sampled at 200 Hz from 8 channels

• 400 ms post-stimulus acquired as one ‘trial’.   400 ms = 80 samples

• First 100 ms discarded (visual transmission delay)
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Training procedure – data acquisition

Trial duration = 400 ms

100 
ms

100 
ms

100 
ms

C3
Cz
C4
P3
Pz

P4
O1

O2

A12 B34 C56

time
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Inter-trial interval (ITI)

Slow speed

100 
ms

100 
ms

100 
ms

C3
Cz
C4
P3
Pz

P4
O1

O2

400 ms

Trial duration = 400 ms

A12 B34 C56

time
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A12 B34 C56

Inter-trial interval (ITI)

Medium/fast speed

Trial duration = 400 ms

C3
Cz
C4
P3
Pz

P4
O1

O2

D78 E90

Trial duration remains the same.
Trials overlap

240 ms (medium speed)
160 ms (fast speed)

time
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• A group of letters can either contain or not contain the oddball.

• Trials recorded when the oddball is present is labeled ODD, 
and EVEN otherwise. ODD and EVEN are classes. 

Training procedure – data labeling



Data dimension
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100 ms 300 ms

C3

Cz

C4

P3

Pz

P4

O1

O2

300 ms (60 samples)

8 channels

This is 1 trial of EEG data.



1. There are many redundant and irrelevant data in EEG. 

2. We only need a subset of features from the EEG that can tell us whether or 
not oddball is presented to the subject.

3. Feature extraction is to extract only the relevant subset of EEG data that 
help us with the task of discriminating between ODD and EVEN classes.
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Feature extraction and classification
Motivation

Reshape
Dimension
Reduction

Feature
Extraction

Classification
Trial 

Extraction

EEG n× ddrn×480n×480 n× dfe



1. Each trial of data (8 ch × 60 sp) is reshaped into a vector ( 1 × 480 ).

2. Trial vectors from each class form two matrices: 
1. Oddball matrix (nO × 480) containing only oddball trials

2. Evenball matrix (nE × 480) containing only evenball trials

3. Feed both matrices into dimension reduction and then feature extraction
algorithms
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Feature extraction and classification
Preparing data

Reshape
Dimension
Reduction

Feature
Extraction

Classification
Trial 

Extraction

EEG n× ddrn×480n×480 n× dfe



1. Many linear discriminant feature extraction techniques do not work well 
with small-sample-size problems (more dimensions than samples).

2. Even at fast speed, we only get 267 oddball samples, but we have 480 
dimensions.

3. A more general, systematic way to reduce the dimension is required.

PCA

CPCA
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Dimension reduction
Motivation

Reshape
Dimension
Reduction

Feature
Extraction

Classification
Trial 

Extraction

EEG n× ddrn×480n×480 n× dfe



• PCA is a procedure that transforms data 
into linearly uncorrelated components 
(principal components), sorted by 
variances in descending order

• Similar to:
• Singular value decomposition of the data

• Eigenvalue decomposition of the covariance

• You can only have up to n-1 or d principal 
components, whichever is smaller
• n = number of trials

• d = number of original dimensions

31

Principal Component Analysis (PCA)
Overview

𝑥1

𝑥2

PC #1

PC #2

𝑥1

𝑥2

PC #1

PC #2



X is data. E[X] = 0.

1. Calculate SVD: 𝐗 = U Σ VT. U is (n × n), S is (n × d), V is (d × d)

2. PCA: 
• Retain only the n-1 highest singular values. Call this 𝜎′.

• Square and scale the singular values. s = σ′ 2/(n − 1), i.e. latents
Retained vectors in V = PC coefficients.

3. Dimension reduction: 
• Retain only latent values above the mean

• Retained vectors = 𝜱, the retained PC coefficients

If we multiply X by 𝜱, we reduce the dimension of X.

32

Dimension reduction (DR) by PCA
Algorithm (SVD method)



1. Ordinary PCA does not consider labels. It does 
not know whether data is for oddball.

2. Ordinary PCA may fail to separate data into 
the correct labels due to variances.

3. Problem can be alleviated by adding between-
class information and treat each class 
separately
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Dimension reduction by Classwise PCA (CPCA)
Motivation

Ref: Das K, Nenadic Z (2009). An efficient 
discriminant-based solution for small sample size 
problem.

𝑥1

𝑥2

PC #1

PC #2



1. Perform PCA + DR on each class
• Red cloud  Red PC

• Blue cloud  Blue PC

2. Between-class PC coefficient (green line)

3. Each class has its own PC #1s and the 
green line

4. Orthonormalize separately:
• Red and green lines

• Blue and green lines

5. Result: Classwise PC coefficients
• Red + green lines = PC coeff. for red subspace

• Blue + green lines = PC coeff. for blue subspace
34

Dimension reduction (DR) by CPCA
Algorithm

𝑥1

𝑥2

Red PC #1 Blue PC #1

Blue PC #2

Red PC #2
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Feature extraction
Motivation

• CPCA retains 20-40 dimensions. 

• Covariance estimates.

• Picking 1-3 highest latents (from CPCA) may be sub-
optimal

• Need an algorithm that is specifically designed to 
separate classes

• Easier to visualize the data in 1-3 dimensions

• LDA and AIDA

Reshape
Dimension
Reduction

Feature
Extraction

Classification
Trial 

Extraction

EEG n× ddrn×480n×480 n× dfe

𝑥1

𝑥2
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Linear discriminant analysis (LDA)
Algorithm

Assume Gaussian distribution for class data, maximize the ratio of between-class 
covariance to within-class covariance.

1. Calculate within-class covariance of class data XC. (XC is already reduced by CPCA.)

Σw =  

C

PC XCXC
T

2. Calculate between-class covariances

Σb =  

C

PC μC − μ μC − μ T

3. Find the matrix ω in    argmax
ω

ωTΣbω

ωTΣwω
by Generalized EVD:

Σw
−1Σb ω = Λω

4. The normalized matrix 𝜔 is the LDA coefficient

• Note: The dimension of 𝜔 must be less than number of classes

PC is the prior probability of C.
PC = nC/n

𝜔
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Approximate information discriminant analysis (AIDA)
Algorithm

Based on mutual information between data and class variable.

1. Whitening transform:
W = Σw

−1/2

S = W Σw + Σb W
SC = W XCXC

T W

2. Approximate 𝜇 measure:

Z = log S − 

C

PC log SC

3. Solve the EVD with only the m largest eigenvalues (m = output dimension)
Zv = λv

4. The AIDA coefficient is:
vTW

T Ref: Das K, Nenadic Z (2008). Approximate information 
discriminant analysis: A computationally simple 
heteroscedastic feature extraction technique
Nenadic Z (2007). Information discriminant analysis: feature 
extraction with an information-theoretic objective

W = Whitening operator
ΣW = Within class covariance
Σb = Between-class covariance
PC = Prior probability

S = Whitened total covariance
SC = Whitened class covariance 



Data are reduced to features of 1-3 dimensions and can be classified:
fC = X ΦC TDA

The posterior probability of class C given data feature f is:

P C f =
p f C PC

p(f)

• p f =  C p f C PC is the total probability of f
• PC is the prior prob. of C
• p(f|C) is the likelihood of f given C.
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Reshape
Dimension
Reduction

Feature
Extraction

Classification
Trial 

Extraction

EEG n× ddrn×480n×480 n× dfe

Classification by Bayes rule
Formula

In BCI Speller, 𝑷𝑪 = (
𝟏

𝟕
,
𝟔

𝟕
)



We use Gaussian (normal) distribution for the likelihood. It is essentially the 
Mahalanobis distance between f and 𝜇𝐶.

p f C =
1

2π d Σ⋆
exp f − μC Σ⋆

−1 f − μC
T
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Classification by Bayes rule
Likelihood function

µ0, ∑0 µ1, ∑1

d = 2
C = 0 or 1



Note the variance Σ⋆ in the likelihood function can either be the class covariance 
or the total covariance. 

• For quadratic classifier, 
Σ⋆ = Σ𝐶

• For linear classifier, 

Σ⋆ =  

𝐶

PC X𝐶XC
T

• Quadratic is more specific to each class 
(since classes have different covariances)

• Linear is more robust (more trials to estimate covariance)
40

Classification by Bayes rule
Quadratic and linear classifiers



• We get the posterior probabilities for each class, e.g. P Oddball f) and 
P Evenball f) from Bayes rule, from each class subspace.
• Remember there are as many Φ𝐶 as there are classes, and each forms a subspace.

• We need a way to make it compatible with ordinary Bayes classifier.

41

Classification
Classwise decision rule

EEG
Odd or Even

Odd or Even
?

Odd space

Even space



The class with the highest posterior, anywhere, wins.

Example:
P Odd f, so = 0.1, P Even f, so = 0.9
P Odd f, se = 0.6, P Even f, se = 0.4

“Even” class wins

To consolidate the posteriors, normalize highest posterior from each class:

P Odd f =
0.6

1.5
= 0.4, P Even f =

0.9

1.5
= 0.6

42

Classification
Classwise decision rule

𝒔𝒐 = oddball subspace
𝒔𝒆 = evenball subspace



With the posterior probabilities calculated, we can decide on the class label of 
the EEG data:

EEG trial is  
Oddball ∶ P Odd f > P(Even|f)
Evenball ∶ Otherwise

Maximum a posteriori (MAP) rule

Recap:

1. One trial of data X = (8 channels × 60 sample points).

2. Feature extracted per class subspace: fc = XΦCTDA
3. Posterior probabilities from classwise classification: P(C|f)

4. Decision from posteriors is made

43

Classification
Classwise decision rule



Cross-validation (CV)
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Reshape
Dimension
Reduction

Feature
Extraction

Classification
Trial 

Extraction

EEG n×480

Validation

n× ddrn×480 n× dfe

• Cross-validation is a technique to estimate the performance of the classifier 
on new data, without obtaining new data.

• We use stratified 10-fold cross-validation. In each CV iteration,
1. 10% of trials from each class are removed from the training data

2. The remaining 90% are used to build the classifier (green box)

3. The classifier decodes those 10% trials into class labels

4. The numbers of times it gets correct/wrong are tallied



Cross-validation output

• The output of a cross-validation run is a confusion matrix:
P(C1|C1) ⋯ P(Cm|C1)

⋮ ⋱ ⋮
P(C1|Cm) ⋯ P(Cm|Cm)

where m is the total number of unique classes, and P(CX|CY) is read as 
“probability of decoding a new trial from Class Y as Class X”. 

• Diagonal terms are the probabilities of correct decoding

• The total probability of correct decoding is the sum of the diagonal 
weighted by priors:

Pcorrect =  

i

PCi P(Ci|Ci)

45



BCI-Speller experiment
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Six subjects (2F, 22-56 y.o.) participated over 3 days. Each day consisted of 
training and online procedures for all 3 speeds (slow, medium, fast)



BCI-Speller experiment 
training procedure results
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1. Training performance (cross-
validation) ranged ∼90-97% 
(chance level = 85.7%)

2. Online task: They were then asked 
to correctly copy-spell: 
THE QUICK BROWN FOX 

JUMPS OVER THE LAZY 

DOG* 

over 1-3 online sessions per speed 
on each day.

Average±s.d.
Best

Interface speed (ITI, ms)
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BCI-Speller online operation

Video slowed 
down to 

0.25x



BCI-Speller online operation

Video slowed 
down to 

0.25x
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BCI-Speller online operation

Video slowed 
down to 

0.25x

50
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BCI-Speller online operation



Information transfer rate
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Information transfer rate 

𝐼𝑇𝑅 =
𝑁𝑐

𝑇
log2 |𝐴|

• 𝐴 = 42 (number of different characters that can be chosen) 
• NC = number of characters correctly entered (44 for the quick brown fox…)
• T = time taken (seconds)

Useful when comparing between different 
speller designs (more/less characters on 
screen).

Note that T excludes the 3-s pause times.

Input design ITR range (bit/s)

Our BCI Speller
(4.7 s/char – 10.7 s/char)

1.77 – 3.04
(4 – 7 wpm)

Other BCI spellers 0.22 – 1.03
(0.5 – 3 wpm)

Typing by hand 9.01 – 12.9
(23 – 33 wpm)



BCI Gait
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BCI Gait
• BCI-Gait uses the changes in the sensorimotor rhythms (SMR) on the 

motor areas of the brain to control a walking device

• Self-paced – Instead of stimulus-response, the user changes their own 
brain signals at their own pace to control the BCI in real time

• Idling and walking kinesthetic motor imageries (KMI) – intuitive control 
strategy

54



BCI Gait
Three stages of implementation

1. BCI-Avatar: Control a virtual reality walking simulation

2. BCI-RoGO: Control a robotic gait orthosis over a treadmill

3. BCI-Parastep: Control a functional electrical stimulation (FES)-based 
walking prosthesis

55

1

2 3
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BCI Gait experiment protocols

BCI-Avatar
1. Training procedure
2. Build classifier
3. Calibration
4. Online control of an 

avatar in a video game

BCI-RoGO
1. Training procedure
2. Build classifier
3. Calibration
4. Online control of a 

robotic gait orthosis

BCI-Parastep
1. Training procedure
2. Build classifier
3. Calibration
4. Online control of a FES-

based walking prosthesis

Parastep® (Sigmedics Inc., Fairborn, OH)



Training procedure – protocol
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Cue

EEG cap

Computer

10 x

1. Cue `Walk’ (30 s)
Kinesthetic motor 
imagery (KMI) of 
walking

2. Cue `Idle’ (30 s)
Imagine idling

(total 10 minutes)

Amplifiers 
& DAQ



Subject demographics (BCI-Avatar only)
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Able-
Bodied

Paraplegia, 
tetraplegia



Equipment

• EEG cap: NeXus EEG Cap 
(Medi Factory, Heerlen, The Netherlands)

• EEG reference: Between AFz and FPz
electrodes

• EEG amplifiers: NeXus-32 
(MindMedia, Roermond-Herlen, The Netherlands)

• EEG data acquisition device (DAQ): Same 
as EEG amplifiers

• DAQ to receive cue signal: MP150 
(Biopac Systems)

EEG: Sampled at 256 Hz

Cue: Sampled at 2000 Hz

59

REF



NeXus EEG amplifiers and DAQ
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REF & SYNC
SYNC

SYNC

micro-coax

Electrode Board Adapters

𝐙𝐢𝐧 = 1 𝐓𝛀,    𝐯𝐢𝐧 = ±𝟏𝟓𝟎𝐦𝐕, 
ADC = 22-bit 
active shielding amplifiers
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Timing and synchronization
Problem: 

EEG and textual cues are not recorded together. 

EEG amps have no aux ports.

How to label Idle vs. Walk segments on EEG?

Solution: 

1. A timing signal from the computer
Walk cue = Audio tone
Idle cue = No audio

2. A synchronization signal between NeXus EEG and MP150
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COMPUTER

DISPLAY
Cue and 
timing
signals

MP150  DAQTiming and 
sync signals

EEG and sync
signals
(optical fiber)

Audio jack

Timing and synchronization
Problem: 
EEG and textual cues are not recorded together. 
How to label Idle vs. Walk segments on EEG?

high

low

Synchronization 
signal

NeXus EEG amplifiers

Sync
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Timing and synchronization

The first square pulses are aligned on both records

EEG record

Cue record
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Timing and synchronization

When aligned, the timing signal is used to divide EEG into Idle and Walk segments.

W W W W W W W W W WII II II II II

Cue record

EEG record



65

1. EEG record is divided into 30-s Idle and 30-s Walk segments

2. The first 8 s in each segment are discarded

3. Remaining segments are further split into five 4-s small segments

4. A total of 50 Idle trials and 50 Walk trials are extracted

Trial extraction
Reaction & transition time

30 s

8 s 8 s 8 s

4 s

EEG record WALK IDLE WALK
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Data processing

1. Each small segment is transformed to 
frequency domain using Fast Fourier 
Transform (FFT)

2. Power spectrum is integrated over 
2-Hz bins, centered around 
7, 9, … 39 Hz.

3. Resulting in 17 sample points per 
channel.

4 seconds

FFT

P
SD

 (
μ
V
2
/H

z)
Frequency (Hz)

P
SD

 (
μ
V
2
/H

z)



Feature extraction, etc.
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Reshape
Dimension
Reduction

Feature
Extraction

Classification

EEG
Segment 

Extraction
Sliced into 4-s 

smaller segments
Power 

Spectrum
∫ 2-Hz

Bins
Up to 64 ch.
53-54 ch. typ.

Up to 64 ch. and 17 bins

Same as 
BCI-Speller

Validation
ΦC TDA



Feature extraction filter (AB)
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Feature extraction filter in the 12-14 Hz bin for Subject A2 (29M). 
Higher magnitudes (deep blue/red) = more important. 
The CPCA technique generates one filter for each class. Left: Idle subspace, Right: Walk subspace.
Training performance: 86.6% (50% chance).
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Feature extraction filter (SCI)

Feature extraction filter in the 14-16 Hz bin for Subject S1 (27F, SCI, T8, ASIA B, 11 yr post)

Training performance: 94.5%



Relearning process?
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The FE filters for Subject S3 (46M, SCI, T1, ASIA B, 
4 yr post) evolved over the 5 days.
• No strong features in 𝜇 band in the first 3 days
• On the 4th day, foot and left hand 

representation areas “lit up”
• Training performance jumped from 62% to 92%



BCI Gait: Online procedure flowchart
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Reshape
Dimension Reduction and 
Feature Extraction Filter

“Classification”

EEG
Store in 
Buffer

Extract 750-ms 
segment

Power 
Spectrum

Integration Bins (2 Hz) 
@ 7, 9, … 39 Hz

Averaging Window 
(1500-2000 ms)

P(Walk|f)

Binary State 
Machine

 P(Walk|f)

Output 
Device

Every 500 ms, these steps are performed:

Idle 

Walk



Binary state machine
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1. Input: P(W|f*) averaged over 1.5-2.0 s
Output: Idle or Walk, controls the output device

2. Two parameters: 
Idle Threshold (𝐓𝐈)
Walk Threshold (𝐓𝐖)

3. Concentrated effort vs. maintenance of imagery



Calibration procedure: determine 𝐓𝐈 and 𝐓𝐖
Steps

1. The BCI is put into online mode, with the following exceptions:
• The output device is disconnected

• The subject follows verbal cues from an experimenter

2. The experimenter instructs the subject to perform idling and walking KMI
• The timing of each KMI is noted

3.  P(W|f) from the calibration session is split into  P(W|f ∈ I) (when 
instructed to idle) and  P(W|f ∈ W) (when instructed to imagine walking).

4. Histograms are plotted.

• Calibration procedure ∼ 4 minutes

73



Calibration histograms

74



75

BCI Avatar: Online task
Optical character recognition to 
interpret the player avatar’s 
location in the game world

Third person view of the avatar
(some subjects preferred first-
person view)

Subjects are tasked to stop 
for 2 seconds within this zone

Control a player’s avatar

• Walk across the field as fast as possible

• Stop by 10 NPCs for 2 s each



76

BCI Avatar: Online performance

Subj. S4 (Sep, 2012) Chiari malformation (C5, 14 yr post)Subj. S1 (Mar, 2010) SCI (T8, ASIA B, 11 yr post) 
(Live demo, Reeve-Irvine Research Center)

Video @ 2x speed
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July, 2013
Person with SCI 
(T6, ASIA B)

June, 2012
Able-bodied 
person

Video @ 4x speed

BCI RoGO: Online performance



Conclusions and future works
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Review of objectives
• Goal: Create high-performance BCI using novel data processing techniques

• Specifically: Apply non-linear (piecewise linear) feature extraction, 
classification, and validation techniques to develop BCIs

• Result: 
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Design goal BCI-Speller BCI-Gait

Short training time Yes (6-7 min) Yes (10-15 min)

Intuitive control Yes Yes

High performance Yes (4-5 s/chr) Yes (high correlation)

Adaptive (not tested) Yes (AB, paraplegia, 
tetraplegia)

Versatile (not pursued) 6+ output devices
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BCI-Gait: 
Overground

walking

• Training time:
• 17 physiotherapy 

sessions
• 7-11 BCI-Avatar 

training sessions
• Performance:

• Offline: 100%
• Online: 𝜌 > 0.9

iMove Lab



Electrocorticography (ECoG)
• EEG based system

• EEG cap

• Artifacts

• Dries up

• Bulky equipment

• Limited bandwidth and resolution

• ECoG
• Record underneath the dura

• Better spatial resolution

• Higher bandwidth

• Long-lasting

• Immune to artifacts

81



ECoG: Better bandwidth and SNR
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IDLE MOVE IDLE MOVE IDLE MOVE IDLE MOVE

High-𝜸 band 
(70 – 160 Hz)EEG Bandwidth Limit

∼35 Hz

IDLE

μ band



ECoG robotic arm control
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• State decoder using the 
same BCI-Gait software

• Trained in 3 minutes



Future works
Fully-enclosed ECoG-based BCI implant

• Bio-compatible

• Long lasting

• Minimal infection risk

• Better recording resolution

• More accurate decoding

Long-term solution to restore functional independence for people with 
severe paralysis
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