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Abstract—After prolonged paralysis and disuse of the lower
extremities, patients with paraplegia due to spinal cord in-
jury (SCI) typically lose the ability to generate the proper
electroencephalogram (EEG) o and S modulation associated
with leg movements. With the emergence of brain computer
interface (BCI)-controlled ambulation devices to restore brain-
controlled walking in this population, the loss of these EEG signal
modulation may impeded the ability to operate such systems, and
evidence suggests that a prolonged period of training may be
necessary to restore this physiological phenomenon. To address
this issue, this study explored whether immersive Virtual Reality
(VR)-feedback can facilitate faster acquisition of the EEG signal
modulation necessary to control BCI systems for walking, due
to the more convincing sensory feedback. Here, we designed an
EEG-based BCI-controlled walking simulator to test this concept.
The walking simulator is composed of 10 designated stop zones
along a linear course. Able-bodied subjects were tasked with
using idling or Kinesthetic motor imagery (KMI) of gait to control
an avatar to advance along the course, dwell at each designated
stop for 5 s. The subjects performance was measured by a
composite score was generated by two subscores. A stop score
is generated according to the number of correct stop within
designated zones. A time score was calculated to account for
any extra time taken by the user. The geometric mean of these
two scores was used to calculate the composite score. Three
able-bodied subjects were recruited to operate the BCI-walking
simulator. Two were assigned to the immersive VR group and
one to the non-immersive VR group. Subjects operated the BCI-
walking simulator for up to 4 separate sessions. The immersive
VR group achieved an average of 60.4% =+ 12.9 composite score
by their last session, while the non-VR group had an average
composite score of 79.0% =+ 12.2. Overall, the immersive VR
feedback group achieved a learning rate of 1.07% per run
whereas the non-immersive VR feedback group achieved an
improvement of 0.42% per run. This provides early evidence that
immersive VR feedback may hasten the rate at which subjects
can achieve BCI-control. However, this study was conducted with
only three able-bodied subjects and therefore future work will
focus on determining of similar outcomes are seen in a larger
cohort of SCI subjects with paraplegia.

Index Terms—Brain Computer Interface, Virtual Reality, Am-
bulation, Rehabilitation, Spinal Cord Injury

I. INTRODUCTION

Paraplegic or severely paraparetic individuals due to spinal
cord injury (SCI) are unable to walk due to disruption of
communication between the brain and the lower extremities.
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With no current biomedical solution, technology such as
robotic exoskeletons have been used to restore ambulation in
these individuals. However, these devices do not enable brain-
control of walking and hence do not mimic the much sought
after able-bodied function. Brain computer interface (BCI)
controlled lower extremity prostheses is one emerging method
to enable brain-control of walking after SCI [1], [2]. However,
after long periods of lower extremity disuse in SCI patients,
the brain no longer readily generates the electroencephalogram
(EEG) « and 3 band modulations typically seen during leg
movements [3], [4], which are necessary for BCI control. This
requires extended periods of of motor imagery or attempted
movement practice to restore the EEG signal modulation
associated with attempted movements [5]. It has been shown
that BCI training in non-immersive virtual reality (VR) can
be used to aid subjects with SCI in this process, but without
aid this process may take up to weeks [6]. This is especially
problematic in cases where patients have limited time to
work with BCI systems, such as when they have implanted
electrodes. It is hypothesized that headset-driven immersive
VR systems (e.g., Oculus Rift, Meta Quest, HTC VIVE, Valve
Index, etc.) can facilitate faster learning due to their more
convincing feedback mechanisms. This study seeks to provide
an early assessment whether BCI feedback via a headset driven
immersive VR system can facilitate faster acquisition of BCI
control compared to feedback from existing non-immersive
monitor displays.

II. METHODS
A. Overview

This study aims to investigate whether immersive VR feed-
back (i.e., VR headset) improves the rate of learning in BCI
operation compared to that of non-immersive VR feedback
(i.e., standard monitor display). Subjects were asked to play a
EEG based BCI controlled walking simulator with either a VR
Headset or a standard monitor. Their performance scores were
measured and used to establish if there were any differences
in the learning rates in these two conditions.

B. BCI System Description

The BCI hardware utilizes an architecture similar to that
which was described in [4]. Briefly, the system consists of



2 microcontroller cores connected to supporting circuits and
an amplifier array integrated circuit (IC) (Intan Technologies,
Santa Monica, CA) to acquire, digitize, and decode EEG
signals. This system was implemented as an embedded system
on a custom printed circuit board. During operation, the BCI
system is connected to an extended 10-20 64 channel EEG cap.
To facilitate BCI operation, training EEG data is first acquired
prior to operation. Able-bodied subjects (age >18 years) with
no prior neurological injuries and no prior BCI experience
were recruited for this study. Subjects underwent EEG cap
placement and electrode gel was placed into the following
electrodes: CZ, C1, C2, C3, C4, and AFz. Impedances between
each electrode and the AFz reference electrode were reduced
to <10k(2. Subjects were asked to follow alternating 10-s cues
of idling and kinesthetic motor imagery (KMI) of walking
over a total of 480 s while their EEG was acquired (common
average reference) at 200 Hz.

The training data was analyzed offline to generate an EEG
decoding model using a combination of classwise principal
component analysis [7] and linear discriminant analysis (LDA)
as described in [4]. The offline accuracy of the decoding model
was estimated using 10-fold cross validation.
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Fig. 1. Schmatic‘ o the.VR-BCI system.

In the online mode, novel EEG signals were acquired in
250-ms windows. The spectral powers in three consecutive
windows were averaged and fed to the decoding model to
obtain the posterior probability of the “walk” state, P(M|f),
from the 750-ms sliding window. A state machine governed the
BCI transitions between the idle and walk states, as dictated
by transition thresholds 77 and Ty. More specifically, when
P(M]|f) < Ty, the BCI is in the idle state; P(M|f) > Ty,
the BCI is in the walk mode; Ty < P(M|f) < Ty, the BCI
defaults to the previous state.

To set (17, Ty ) the subject was asked to alternate between
idling and walking KMI for ~30 seconds each while recording
their P(M|f) value. Thresholds (T7, Ty) were set empirically
by the operator to maximize the separation between the walk
and idle states.

In the online operation of the system, subjects were asked
to utilize idling and walking KMI to control an avatar in the

walking simulator. The walking simulator was developed using
the Valve Hammer Editor within the virtual reality game Half-
Life: Alyx (Valve Corporation, Bellevue, WA), and executed
on a desktop base station computer designated as the base
station. When the BCI decodes the walk state, the BCI system
transmit a command over WiFi to the base station. The base
station software in turn passes a command to the walking
simulator to advance the avatar forward (~ 75 in-game units
[IGU)/s). During the idle state, it will hold the avatar still.
Communication between the base station software and the
walking simulator was facilitated by OpenVR-InputEmulator
Mod [8] which converts virtual keyboard commands to VR
controller commands.

The objective of the walking simulator is to progress for-
ward along a linear path and stop in each of 10 designated
stop zones for 5 seconds before proceeding to the next stop
zone. The total length of the linear course is 4112 IGU with
272 IGU between each zone. Each stopping zone is 128 IGU
long, as shown in Fig. 2. If the walking task was performed
without any error, the entire course can be traversed in 104.8s.
Five lights were placed in each stop zone to visually cue a
subject on when to switch to “walk” state again. Subjects
are given a maximum of 900 s to complete the course
before the trial is ended by the experimenter. The walking
simulator environment was displayed to the subject with either
immersive VR mode via an Oculus Rift VR headset or non-
immersively via a standard 29-inch curved monitor display.

Fig. 2.

Top: Overhead view of VR course. Bottom: image of walking
simulator as seen by participant. Light colored patches represent designated
stops. IGU: In-game unit.

C. Performance assessment of immersive VR vs non-
immersive VR

Each subject was invited to train and operate the BCI for up
to four separate visits. At each visit the subject would undergo
EEG placement, training data acquisition, and operate the BCI-
controlled walking simulator. At each visit, up to 3 offline
training attempts to reach an offline decoder accuracy > 70%.
If the subject could not achieve this decoder accuracy within
3 attempts, the decoding model with the highest accuracy
would be used. Subsequently, subject then operated the BCI-
controlled walking simulator for at least 5 runs while their
performances were recorded and assessed as below.



The avatar’s positional data within the walking simulator
throughout each run was exported and analyzed to generate
a composite performance score, similar to that in prior work
[9], [6]. Briefly, the composite score comprises two subscores,
a stop score, cg, and a time score, c¢;:
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where s; is the dwell time in the i stop zone (s; is capped
at 5°8), Syaz 18 5°S, tmae 1S the maximum allowed trial time
900 s, t is the subject’s time to completion, and t;geq; 1S
the theoretically ideal minimum time required to achieve the
maximum stop score. Here, t;404; 15 104.8 s, which is the time
taken to complete the course without any errors.

A linear regression was performed on the composite score
across all runs, and the slope was used to estimate the learning
rate.

A random walk procedure was performed as in [6] to
determine the statistical likelihood that each BCI run was
purposeful. Briefly, for each run performed by a subject,
10,000 random walks were simulated within the walking
simulator using the same 77 and Ty as the subject did.
The resultant composite scores were compared to that of the
subject’s for that run to determine the empirical p-value. A
purposeful run was defined as one with an empirical p < 0.001.

III. RESULTS

The study was approved by the University of California,
Irvine Institutional Review Board. Three able-bodied subjects
provided their informed consent to participate in this study.

The BCI hardware and walking simulator were both suc-
cessfully designed and implemented as described above. Three
able-bodied subjects provided their informed consent to par-
ticipate in the study. Subject 1 and 3 were randomized to
immersive VR feedback, and subject 2 was randomized to
the non-immersive standard monitor display feedback. Both
subjects operated the BCI-walking simulator over four separate
visits. Their demographics and performances are summarized
in Table 1. Each subject successfully completed the walking
simulator course at least five times during each visit with the
exception of the VR subject’s third visit which only had 3
successful completions of the course.

The composite score across all runs was calculated for
both groups and is summarized in Fig. 3. The Immersive VR
feedback group demonstrated an composite score improvement
rate of 1.07%/run, whereas this was 0.42%/run for the non-
immersive feedback group. The average performance on first
visit for the immersive VR feedback group was 44.020% =+
16.350, and 71.571% =+ 8.195 for the non-immersive feedback
group. The average performance on final visit was 60.372%
+ 12.867, and 79.009% =+ 12.158 for the non-immersive
feedback group. The proportion of purposeful runs during each
day is reported in Table I. Note that the composite scores

acheived by the random walk is predominantly driven by the
Tr and Ty .
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Fig. 3. Composite score all subjects divided by group distributed across run
number.

IV. DISCUSSION

In this study, we successfully designed and implemented
a BCI-controlled walking simulator with both immersive and
non-immersive VR feedback. Able bodied subjects were able
to operate the BCI-controlled walking simulator, and demon-
strated improvement in their composite score over time. For
the immersive VR system, the subjects’ overall composite
score improvement rate (1.04%/run) was much higher than
that of the non-immersive VR group (0.42%/run). Purposeful
control was immediately established at a higher rate at the first
visit for the immersive VR group, and remained consistently
higher (Fig. 3). This provides preliminary proof-of-concept
that immersive VR feedback may facilitate more rapid acqui-
sition of purposeful BCI control and higher BCI learning rates.

Despite the initial findings, it is important to note that sub-
jects in the immersive VR group started at a lower composite
rate than the non-immersive VR group, and this may indicate
some potential pitfalls with immersive VR feedback. For
example, users with little to no prior exposure to immersive
VR may find it is initially overstimulating and distracting.



TABLE I
SUBJECT DEMOGRAPHICS AND BCI PERFORMANCE. SJ: SUBJECT; RW: RANDOM WALK. NIM/IM: (NON)-IMMERSIVE VR

Sj. # Age/Sex Group Visit Decoding Tr Range Tw Range Avg. RW Avg. % Purposeful
(Runs/visit) Accuracy Composite Composite
Score (%) Score (%)
1 (6) 59.8% 0.15-0.5 0.3-0.65 41.1 £ 143 437 £ 155 0.33
| 25M M 2 (6) 66.9% 0.001 0.0025-0.003 61.8 + 6.8 30.1 £ 0.0 1
303) 74.4% 0.0015-0.002 0.002-0.003 569 £ 1.3 30.1 £ 0.0 1
4 (8) 64.8% 0.009 - 0.01 0.012-0.013 653 +£9.2 30.1 £ 0.0 1
1(5 62.7% 0.4 0.5 71.6 + 8.2 502 £9.2 0.2
2(5) 63.4% 0.4 0.45 79.5 £ 11.5 479 £+ 8.6 0.6
2 20, NIM
M 3(5 67.5% 0.32 0.35 839 + 7.6 389 £ 64 1
4(5) 69.8% 0.45 0.55 79.0 £ 12.2 56.5 £ 9.4 0.4
1(3) 49.4% 0.08 0.12 499 + 219 30.3 £ 0.7 0.8
3 25/M ™M 2 (5) 57.9% 0.70 0.83 47.6 &+ 229 03 +£12 0.8
3(5 58.0% 0.55 0.57 52.5 +£ 149 65.7 £ 8.5 0

Additionally, the VR headset straps often run directly over
the electrodes of the EEG cap, potentially causing a motion
artifact. These issues may have contributed to a lower initial
composite score. However, the higher leaning rate, immersive
VR feedback may ultimately still lead to faster and more
robust acquisition of BCI control. The above problems may be
rectified in the future by exposing subjects to immersive VR
in an alternative context before beginning BCI training. Also,
the VR headset straps may need to be redesigned to minimize
interference with electrodes, or electrodes can be integrated
into the headest itself, such as recently shown in [10].

The major limitation of this early study was carried out with
able-bodied subjects and a small sample size. This study will
need to be repeated in a cohort of SCI patients with paraplegia,
as it unclear if similar results will be observed. In particular,
it is expected that the SCI subjects with paraplegia will use
a different mental strategy to control the BCI. Namely, we
expect that they can perform attempted ambulation rather than
walking KMI (as with able-bodied subjects).

If similar findings hold in an SCI cohort and if BCI-
based gait therapies prove effective in the future, then the
increased learning speed from immersive VR feedback may
have significant implications. For example, it could allow
SCI patients to initiate use of BCI-controlled systems for
ambulation or gait therapy faster and more robustly. Specifi-
cally, faster acquisition of BCI control will translate to more
time engaging in BCI-mediated gait rehabilitation, potentially
leading to improved patient outcomes. This in turn may
improve their experience and lead to more significant and/or
faster gains of function. Alternatively, this may lead to more
rapid ability to initiate use of a BCI-controlled lower extremity
prostheses for individuals whose injuries are so severe that
there is no rehabilitative potential. Finally, faster acquisition
of BCI control will also reduce the financial cost associated
with future BCI-mediated therapies for SCI gait rehabilitation.

To the best of our knowledge, other studies have not
examined whether immersive VR-BCI systems affect the rate
of BCI learning for the purposes of controlling a BCI-based
prosthesis. Other studies have examined similar themes, such

as the efficacy of immersive VR as a rehabilitation aid (without
BCI) [11]. Studies such as [12] used immersive VR-BCI
systems directly as tools for rehabilitation of upper extremities,
rather than as a training mechanism for BCI control of
prostheses. Other studies, such as [13] developed immersive
VR-BCI systems, but only for gaming purposes. Finally, some
investigations such as [14] have compared subjects’ ability
to control BCI systems while using immersive VR and non-
immersive VR, but did not examine the longitudinal learning
rate for BCI operation.

In conclusion, this study provides early evidence that im-
mersive VR feedback can greatly increase the rate at which pa-
tients can learn to control a BCI system for SCI rehabilitation
purposes. If BCI-mediated gait therapies prove effective for
SCI in the future, immersive-VR feedback may help facilitate
faster initiation. This may in turn lead to better outcomes and
more economical implementation of BCI-based therapies for
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