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Abstract.

Objective: Invasive brain-computer interfaces (BCIs) have shown promise in

restoring motor function to those paralyzed by neurological injuries. These systems

also have the ability to restore sensation via cortical electrostimulation. Cortical

stimulation produces strong artifacts that can obscure neural signals or saturate

recording amplifiers. While front-end hardware techniques can alleviate this problem,

residual artifacts generally persist and must be suppressed by back-end methods.

Approach: We have developed a technique based on pre-whitening and null

projection (PWNP) and tested its ability to suppress stimulation artifacts in

electroencephalogram (EEG), electrocorticogram (ECoG) and microelectrode array

(MEA) signals from five human subjects.

Main results: In EEG signals contaminated by narrow-band stimulation artifacts,

the PWNP method achieved average artifact suppression between 32 and 34 dB, as

measured by an increase in signal-to-interference ratio. In ECoG and MEA signals

contaminated by broadband stimulation artifacts, our method suppressed artifacts by

78-80% and 85%, respectively, as measured by a reduction in interference index. When

compared to independent component analysis, which is considered the state-of-the-art

technique for artifact suppression, our method achieved superior results, while being

significantly easier to implement.

Significance: PWNP can potentially act as an efficient method of artifact

suppression to enable simultaneous stimulation and recording in bi-directional brain-

computer interfaces to biomimetically restore motor function.

Keywords: brain-computer interface, stimulation artifacts, cortical stimulation, intra-
cortical microstimulation, artifact suppression, electroencephalography, electrocorticog-
raphy, intracortical microelectrode array. Submitted to: J. Neural Eng.
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1. Introduction

Brain-computer interfaces (BCIs) are emerging as a promising solution for restoring

communication to individuals with amyotrophic lateral sclerosis [1, 2, 3], or motor

function to those with paraplegia [4, 5, 6] or tetraplegia [7, 8, 9]. Invasive BCIs

based on electrocorticography (ECoG) [10, 11] or intracortical microelectrode arrays

(MEAs) [12, 13] have the ability to elicit somatosensation via electrostimulation of

cortical tissue. This makes it possible for BCIs, which currently primarily rely on visual

feedback [4, 5, 6, 7, 8, 9], to enact closed-loop control using artificial somatosensory

feedback in what is referred to as a “bi-directional” brain-computer interface (BD-

BCI) [14]. Preliminary studies with BD-BCIs suggest that the artificial somatosensory

feedback may improve BCI performance [15]. However, BD-BCIs, especially in motor

applications, necessitate simultaneous stimulation and recording to enable smooth and

continuous control. One critical requirement for this is that neural feature extraction

must be performed in the presence of strong electrical stimulation artifacts. These

artifacts can compromise BCI performance by masking neural activity or saturating

front-end amplifiers [16, 17, 18]. To avoid this problem, BD-BCIs must be able to

mitigate stimulation artifacts.

A necessary condition for artifact suppression strategies is that large-amplitude

stimulation artifacts must not saturate analog front-ends. To this end, hardware

innovations have been devised to increase front-end dynamic range [19, 20]. Other

front-end approaches safeguard against saturation by employing a variety of techniques.

Examples include template subtraction [21], adaptive filtering [22], and dipole

cancellation [23, 24]. Even with the implementation of such methods, residual artifacts

will persist and must be additionally suppressed by digital back-end methods.

The simplest of these back-end methods include blanking-reconstruction techniques,

wherein data samples containing artifacts are removed and subsequently replaced by

sample-and-hold [25, 26] or interpolated [27, 28, 29] data points. Another approach

is to construct an artifact template by averaging artifact waveforms and subtract the

template from the signal [30, 31]. However, these methods can create significant signal

distortions due to data removal or replacement. A more elegant approach relies on

signal decomposition techniques, such as independent component analysis (ICA) [32]

or empirical mode decomposition (EMD) [33]. These techniques have been useful in

separating artifact from neural sources [34, 35, 36, 37] and are thus considered state-

of-the-art artifact suppression techniques. However, ICA-based methods may fail to

separate stimulation artifacts and neural signals, as they are not guaranteed to be

independent. Our recent study shows that this can happen even when stimulation

artifacts are narrow-band [38]. Similarly, intrinsic mode functions generated by

EMD [33] may fail to separate neural signals and stimulation artifacts because their

local signal characteristics, including smoothness, may be similar. Finally, EMD’s

numerical nature makes it suitable for offline analyses but not amenable to a real-time

implementation.
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Motivated by these shortcomings, we recently developed a subspace-based

technique [38] that utilizes pre-whitening and null projection (PWNP) to efficiently

separate artifact and neural signal subspaces. The artifacts can then be suppressed

by projecting the contaminated signals away from the artifact subspace. This is in

contrast to ICA, which requires intensive numerical optimization to decompose signals

and a combinatorial search to identify the artifact components. When tested in a single

subject whose electroencephalogram (EEG) was contaminated with electrical artifacts,

our technique achieved superior suppression results to ICA, while having a much simpler

implementation [38].

In this study, we demonstrate the efficacy of the PWNP method in suppressing

cortical electrostimulation artifacts in a variety of neural data. Firstly, we expanded

our preliminary analysis [38] to multiple subjects whose EEG data were contaminated

by voltage artifacts introduced by a signal generator via scalp electrodes. Our analysis

shows that PWNP can suppress these narrow-band artifacts, i.e., increase the signal-to-

interference ratio (SIR), while preserving neuromodulation features, expressed by the

signal-to-noise ratio (SNR). Secondly, we also analyzed subdural ECoG data collected

in an epilepsy monitoring unit to demonstrate PWNP’s ability to suppress broad-

band artifacts generated during cortical mapping procedures. Finally, we analyzed

human MEA data collected during intracortical microstimulation (ICMS) to elicit

artificial sensation. We show that PWNP can suppress these broad-band artifacts

while preserving neural signals such as action potentials. Generally, the PWNP

method outperformed ICA on these diverse datasets, while having a much simpler

implementation. Therefore, we demonstrate that the PWNP method is an effective

technique for the suppression of stimulation artifacts with obvious applications to BD-

BCI technologies.

2. Methods

2.1. Electrophysiological Data Collection and Pre-processing Procedures

Data were collected with the informed consent of all subjects, and all procedures

performed were approved by the Institutional Review Board of the University of

California, Irvine, the University of Southern California, and the Rancho Los Amigos

National Rehabilitation Center.

2.1.1. EEG Data Collection We collected data from two healthy volunteers (Subjects

1 and 2) using 20-electrode (10-20 international system), EEG caps (Compumedics

USA, Charlotte, NC). We reduced the 30-Hz impedance of the electrode-scalp interface

below 10 kΩ by applying conductive gel and abrading the scalp. Nineteen single-channel

amplifiers (EEG100C, Biopac Systems, Goleta, CA) captured EEG signals with respect

to a reference electrode located over the frontal lobe between Fp1/Fp2 and Fz electrodes.

Amplifiers gains were set to 5000× and band-pass filters were set to 1-35 Hz. These
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signals were then sampled at 4000 Hz and digitized with a 16-bit acquisition system

(MP150, Biopac Systems, Goleta, CA). The acquisition system also simultaneously

recorded analog signals generated by a custom MATLAB script (Mathworks, Natick,

MA) that tracked the behavioral cues displayed during the experiment.

Since non-invasive cortical stimulation methods, like transcranial electrostimula-

tion [39], are not commonly used in healthy volunteers, we utilized a hand-held, battery

powered impedance meter (EIM105, General Devices, Ridgefield, NJ) as a surrogate for

a cortical stimulator. Prior to placing the EEG caps, two individual EEG electrodes

were affixed to the scalp with adhesive cream (EC2, Natus Neurology, Middleton, WI)

to the left and right posterior of the Cz electrode. The impedance meter output, which

was a 30-Hz voltage sine wave, was then introduced to the scalp via these electrodes in a

bipolar configuration. This output was also recorded in parallel by the MP150 system.

We first collected baseline activity for one minute without turning on the stimulation.

Subsequently, subjects initiated the behavioral task, wherein the stimulator was turned

on and subjects followed auditory cues that alternated between “eyes open” and “eyes

closed”. Each eyes-open or eyes-closed epoch lasted 15 seconds, for a total of 20 epochs

(5 minutes total). We then saved the EEG data for later analysis.

2.1.2. ECoG Data Collection We collected ECoG data at the hospital bedside from

two subjects (Subjects 3 and 4) undergoing cortical electrostimulation as part of epilepsy

surgery evaluation. Subject 3 was implanted with a standard size (10 mm spacing, 2.3

mm disc electrode diameter, platinum-iridium contacts) 4×5 ECoG grid (Integra Life

Sciences, Plainsboro NJ) over the right temporal lobe. Subject 4 was implanted with the

same type of grid over the left frontal cortex (see Figure 1). A clinical-grade bioamplifier

(Natus R© QuantumTM, Natus Medical Incorporated, Pleasanton, CA) recorded ECoG

signals at a sampling rate of 512 Hz. As part of eloquent cortex mapping procedures,

an FDA-approved cortical stimulator (Nicolet R© Cortical Stimulator, Natus Medical

Incorporated, Pleasanton CA) delivered square pulse trains across a pair of electrodes

(stimulation channel). Each pulse train was delivered for a predetermined duration

(stimulation epoch) across a range of current amplitudes (2-10 mA). Both subjects were

stimulated with the following parameters: 50 Hz pulse train frequency, 250 µs pulse

width, 5 second stimulation epoch, and current amplitudes ranging from 2 to 10 mA in

increments of 2 mA. We saved the collected ECoG data for later analysis in MATLAB.

Data from the electrodes comprising the stimulation channel were excluded as they

saturated during stimulation. All data were high-pass filtered (4th order, Butterworth,

1.5 Hz, zero-phase). We segmented each of the stimulation epochs from the overall

data, alongside an equal-length segment of baseline ECoG immediately preceding the

stimulation epochs. We analyzed a single representative 10 mA stimulation epoch from

each subject, as these amplitudes created the strongest artifacts and thus represent

a worst-case scenario for artifact suppression. We then used the segmented baseline

and stimulation epochs to compare the performance of the PWNP and ICA artifact

suppression algorithms.
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Figure 1. MR-CT co-registered images with ECoG grids. Subject 3 and Subject 4

had 4 × 5 grids implanted in the right temporal area and left frontal area, respectively.

Highlighted electrodes mark the bipolar stimulation channels.

2.1.3. MEA Data Collection MEA data were collected from two 7×7 sputtered iridium

oxide film (SPIROF) tipped microelectrode arrays (Blackrock R© Neurotech, Salt Lake

City UT) implanted in the primary somatosensory cortex (S1) of a single human subject

(Subject 5) with a C5-level complete spinal cord injury [12]. As no imaging data was

available for this subject, the approximate location of this array on a brain template is

shown in Figure 2. Data were collected at a sampling frequency of 30 kHz from a total

of 96 channels, as one electrode on each array was designated as the reference/ground

(Electrode 49 for MEA1 and Electrode 98 for MEA2). An ICMS device (Blackrock

CereStim, Blackrock R© Neurotech, Salt Lake City UT) delivered stimulation through a

single electrode (Electrode 19). A one-second stimulation epoch consisted of delivering

a train cathodic-leading biphasic square pulses at a frequency of 294 Hz, phase width

of 200 µs, and a current amplitude of 100 µA. These stimulation epochs were repeated

10 times with an average of 27 seconds in-between. Electrodes that were saturated due

to stimulation artifacts exceeding an absolute voltage amplitude of 8192 µV (mostly

occurring on MEA1, see Figure 2) were excluded from analysis as they contained no

useful neural data, leaving 54 non-saturated channels across both arrays. Similarly to

the ECoG data, we segmented stimulation epochs from the overall data. We then high-

passed (≥0.1 Hz) and linearly de-trended these stimulation epochs and subsequently

appended them into one 10-second epoch. We also segmented a 10-second epoch of data

occurring between two consecutive stimulation epochs and designated these data as the
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Figure 2. Approximate locations of the two MEAs superimposed on an MRI brain

template. Two 7 x 7 MEAs were implanted over S1. Stimulation was applied to

electrode 19 on MEA1 (electrodes 1 - 49). Saturated electrodes are marked in red.

Electrodes 49 and 98 were used as reference for their respective MEAs.

baseline epoch. These baseline and stimulation epochs were saved for later analysis.

2.2. Artifact Suppression Procedures

2.2.1. Pre-whitening and Null Projection (PWNP) Algorithm The PWNP algorithm

is fully described in [38], and its theoretical basis can be found in [40]. Appendix A

also gives a detailed, self-contained account of the main assumptions and mathematical

derivations. The algorithm exploits the fact that artifacts are typically much stronger

than neural activity, and thus reside in a low-dimensional subspace, corresponding

to the highest singular values of the data matrix. This allows the artifact subspace

to be readily identified, so the data can be projected to its orthogonal complement

through null projection. The resulting data will then reside in an artifact-free subspace.

The pre-whitening step serves to remove spatial correlations between electrodes, which

improves the SNR of neural signals and the accuracy of the signal and artifact subspace

estimates [41]. Mathematically (see Appendix A for derivations) these steps can be

expressed as:

Xclean
S = Σ

1
2
BHHT

[
Σ
− 1

2
B (XS − µS1T)

]
+ µS1T (1)

where XS ∈ Rn×tS represents the artifact-laden stimulation data from n channels over

tS time samples. Correspondingly, Xclean
S ∈ Rn×tS represents the stimulation data after

it has been “cleaned” by the PWNP method. The vector µS ∈ Rn×1 is the time average

of XS and 1 ∈ RtS×1 is a vector whose entries are 1, so that subtracting µS1T de-means
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XS. The pre-whitening process is then completed by multiplying the de-meaned data

by the pre-whitening matrix Σ
− 1

2
B ∈ Rn×n, which is estimated from the baseline data.

The columns of the null-projection matrix, H ∈ Rn×(n−d), are the pre-whitened data’s

left singular vectors that correspond to its lowest n − d singular values, where d is the

dimension of the artifact subspace. The artifact subspace dimension is equivalent to the

number of singular values σ that satisfy the criterion σ > α
√
tS − 1 (α > 1). This is

modified from the original criterion σ ≈
√
tS − 1 to account for noise [38]. The reader is

referred to Appendix A for a full derivation of this criterion. The pre-whitened data are

then null-projected (pre-multiplied by HT), reconstructed (pre-multiplied by H), and

re-colored (pre-multiplied by Σ
1
2
B). Finally the mean, µS, is added back to the data.

To determine the optimal value of the threshold multiplier α for each neural data

set, we used the following procedure. First, the average power P̄ was calculated for each

channel as:

P̄ =
1

nf

∫ f2

f1

PSD(f) df (2)

where PSD(f) is the power spectral density, [f1, f2] is the relevant frequency range,

and nf is the number of frequency points in that range. For the narrow-band, 30

Hz, EEG stimulation, we used the frequency range of [f1, f2] = [29, 31] Hz. For

the broad-spectrum ECoG/MEA stimulation response, we used a frequency range of

[f1, f2] = [0, fs/2], where fs is the sampling frequency. We then calculated P̄ for both

stimulation (Ps) and baseline (Pb) data and identified a worst-case electrode as the

electrode with the largest average power difference (Ps − Pb). We subsequently varied

α = [1, αmax], where α = 1 is the theoretical optimum and αmax is a conveniently chosen

value at which the artifact subspace collapses into an empty set (d = 0). For each value

of α within this range, we removed the artifacts from the worst-case electrode according

to Equation 1, and calculated its average power P clean
α . We then find the optimal value

α̂ by:

α̂ = arg min
α
|P clean
α − Pb|, α ∈ [1, αmax] (3)

Note that this procedure takes advantage of the fact that the power difference between

the baseline and stimulation data is largely due to the presence of artifacts. Therefore,

upon cleaning, we expect that P clean
α̂ approaches Pb.

2.2.2. ICA Artifact Suppression Procedure To benchmark the artifact suppression

performance of the PWNP method, we compared it against an ICA-based back-

projection method. We used the FastICA toolbox in MATLAB [42] to generate

independent components (ICs) for the EEG, ECoG, and MEA data. Unlike the PWNP

method, in which the artifact subspace is readily identifiable due to rank-sorting of

components, the ICA method necessitates a combinatorial search to identify the optimal

artifact subspace. Given the number of channels we had in EEG, ECoG and MEA,

it was not practical to perform a full combinatorial search. Instead, we used the
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following heuristic approach. Converged ICs were inspected in the time and frequency

domains to identify components containing artifact features (e.g. patterns occurring

at the pulse train frequency, power peaks occurring at the pulse train frequency and

super-harmonics [16, 18]). After the components comprising the artifact subspace

were identified and nulled, the cleaned data were obtained via the back-projection

method [43]. This procedure was repeated by nulling various combinations of artifact

components until we achieved the best suppression result, defined as the minimum

average power difference between ICA-cleaned and baseline states on the worst-case

electrode.

2.3. Artifact Suppression Evaluation Analyses

2.3.1. EEG Artifact Suppression Evaluation Using the procedures for PWNP

(Section 2.2.1) and ICA (Section 2.2.2), we cleaned the stimulation EEG data of Subjects

1 and 2. Subsequently, we calculated the change in SNR and SIR due to artifact

suppression for both PWNP and ICA methods in order to compare their performances.

Due to the eyes open/closed task, we expect to observe modulation in the α band (8

– 12 Hz) [44]. To quantify this modulation, we introduced a SNR-like metric, which

compares the separability of the eyes-open/eyes-closed states. Specifically, we calculated

SNR as a deflection coefficient [45]:

SNR(f) = 10 log

√
(µc(f)− µo(f))2

0.5(σ2
c (f) + σ2

o(f))
, f ∈ [8, 12]Hz (4)

where µc(f) and µo(f) represent the average power in the α band over eyes-closed and

eyes-open epochs, respectively. Correspondingly, σ2
c (f) and σ2

o(f) are the eyes-closed

and eyes-open power variances in the α band. The overall SNR was then calculated as

the average of SNR(f) over the α band.

To further compare suppression performances, we also introduced a metric to

represent the SIR. This metric allowed us to evaluate the degree of stimulation

interference in comparison to the amount of occipital α-band modulation. We calculated

the SIR as the ratio of the maximum average power in the α band to the maximum

average power in the interference band, which we chose to be 29 - 31 Hz to capture the

narrow-band, 30 Hz, sine stimulation (Equation 5). We evaluated SIR during eyes-closed

segments to ensure that the occipital α waves were present, i.e.:

SIR = 10 log
max

8≤f≤12
µc(f)

max
29≤f≤31

µc(f)
(5)

For each channel, we calculated the SNR and SIR before suppression and after

application of either the PWNP or ICA method. We then characterized the suppression

performance of each method by calculating ∆SNR and ∆SIR, respectively defined as

the change in SNR and SIR due to artifact suppression. We expect that successful
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artifact suppression would increase the SIR (∆SIR > 0) while not decreasing SNR

(∆SNR ≥ 0). We subsequently used a signed rank test to confirm whether SIR values

across electrodes were significantly different before and after applying either suppression

method. The same test was also used to assess whether the ∆SIR values across electrodes

were significantly different between the two suppression methods. Finally, to visualize

and compare the suppression results spatially, the ∆SIR values were color-coded and

overlaid on a topographical EEG map.

2.3.2. ECoG Artifact Suppression Evaluation ECoG stimulation data were cleaned

using the PWNP and ICA methods described in Section 2.2.1 and 2.2.2, respectively.

Unlike those in the EEG protocol, the subjects in the ECoG protocol did not perform

any behavioral tasks, therefore an SNR could not be defined as was done with the EEG

data. Instead, we evaluated the artifact suppression performance by comparing the PSD

of cleaned data to that of the baseline. This approach is consistent with our previous

assertion that most of the power differences between stimulation and baseline data

are due to artifacts (see Section 2.2.1). For example, significant spectral differences

between cleaned and baseline data, especially at the stimulation frequency and its

super-harmonics, would indicate inadequate suppression. Conversely, more aggressive

suppression could potentially remove neural features in addition to artifacts, resulting in

“over-cleaning”. To control for this outcome, we performed a baseline control experiment

where we applied both artifact suppression methods to the baseline epoch. Since baseline

data contain no artifacts, we expect the baseline epoch to remain relatively unaffected

by this procedure. To visualize potential distortions due to either method of artifact

suppression, we compared the baseline epoch before and after cleaning in the time and

frequency domains. We quantified the distortion in the time domain by calculating the

root-mean-squared error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(bi − ci)2 (6)

where n is the number of samples in the baseline epoch time series, b is original baseline

data and c is the same data after suppression. These RMSE values were then color-coded

and mapped to images of the ECoG grids to spatially visualize the effect of cleaning

over multiple electrodes. Additionally, time domain data for a representative channel

were shown before and after the PWNP/ICA cleaning procedures. We then visualized

the effects of the cleaning procedures in the frequency domain by plotting average PSDs

of baseline and cleaned epochs. A signed rank test was then performed to determine

whether the power distributions were significantly different across frequencies. We note

that the PWNP method may have an unfair advantage in this comparison, as it was

trained using the baseline epoch. To control for this, we tested the performance of both

artifact suppression methods on an additional 100 baseline epochs, segmented from

ECoG data occurring outside of stimulation periods. These tests and their results are

detailed in Appendix B.
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We then examined the neural time series for the stimulation, PWNP-cleaned,

ICA-cleaned and baseline conditions in order to assess the signal quality after artifact

suppression. We next examined the aforementioned conditions in the frequency domain

by calculating the PSD. We accomplished this by splitting the epoch for each condition

(stimulation, PWNP-cleaned, ICA-cleaned, baseline) into 10 equal-length subsections,

and then performing the fast Fourier transform on each section to obtain their PSDs.

The average and standard deviation of these PSDs were then calculated over the sections.

We subsequently plotted the PSDs for each condition for the worst-case electrode,

defined as in Section 2.2.1. This allowed us to observe the frequency domain features

introduced to the baseline PSD by the stimulation. Additionally, these PSDs allowed

us to assess the reduction of artifact features by both suppression methods.

Unlike EEG artifacts, which had a narrow-band frequency response, ECoG artifacts

had a broadband power distribution. As such, the SIR defined by Equation 5 could not

be used, so we introduced a separate SIR-like metric to quantify the artifact suppression

performance. As was described in Section 2.2.1, we expect the power distribution of

cleaned data to approach that of the baseline. To quantify the separation between power

distributions, we calculated a variant of the deflection coefficient [46], which we refer to

as the interference index. Note that this is a general metric that is capable of accounting

for overlapping means and unequal variances [47]. For two power distributions a and b,

the interference index at frequency f is defined as:

I(f) =
1

2
log

σ2
t (f)

σa(f)σb(f)
(7)

where σa(f) and σb(f) are the standard deviations of PSDs for two conditions. Since

the PSD sample sizes for each condition are equal (n = 10, see previous paragraph), the

total standard deviation, σt(f), can be expressed as:

σ2
t (f) =

σ2
a(f) + σ2

b(f)

2
+

[µa(f)− µt(f)]2

2
+

[µb(f)− µt(f)]2

2
(8)

where µa(f) and µb(f) are the means of the two PSDs and µt(f) = 1
2
(µa(f) + µb(f))

is the total mean. We first calculated the interference index between stimulation

and baseline conditions to serve as a positive control (a = stimulation, b = baseline).

Subsequently, we calculated the interference index between the cleaned and baseline

conditions (a = cleaned, b = baseline) to evaluate the effectiveness of each artifact

suppression method. Note that smaller artifact interference will result in a lower value of

I(f) (inverse to SIR). Ideally, in the case where there are no artifacts, the interference

index will approach zero (σa(f) = σb(f) and µa(f) = µb(f)). We then plotted the

interference indices for the stimulation, PWNP-cleaned, and ICA-cleaned conditions for

the worst-case electrode.

We further qualified each interference index by performing a rank-sum test to

identify frequencies with power distributions different than those of the baseline

condition. These significant interference frequencies were then marked on the
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interference index plots. We expect the superior suppression method to result in fewer

significant interference frequencies. As a positive control, we also calculated the number

of significant interference frequencies in the stimulation data.

We additionally characterized the suppression results by calculating the interference

indices for all electrodes in the grid between different conditions for each ECoG electrode.

Specifically, we first calculated the interference index between the stimulation and

baseline conditions as a positive control. Subsequently, we calculated the interference

indices between the cleaned and baseline conditions to quantify the residual artifact for

both artifact suppression methods. We used signed rank test to establish the statistical

significance of these results across all electrodes. Subsequently, we used the same test

to compare the performances of PWNP and ICA interference indices. To visualize the

distribution of residual artifacts, we spatially interpolated, color-coded, and mapped the

interference indices onto MR-CT co-registered images. For both subjects, we used pre-

implantation MR images and post-implantation CT images to co-register ECoG grids

onto a 3D brain rendering. We followed the same co-registration process outlined in [18].

Finally, since clinically obtained stimulation data by definition has no ground truth,

we sought to simulate artifact data wherein the underlying neural signals are known.

Therefore, we extracted artifacts from the stimulation epoch, and overlaid the average

artifact waveforms onto the 100 baseline epochs (as explained above). We then applied

the artifact suppression methods to these simulated data, and compared the results to

the ground truth signals to quantify the performance in the time and frequency domains

(see Appendix B).

2.3.3. MEA Artifact Suppression Evaluation MEA stimulation data were cleaned using

the PWNP and ICA methods described in Section 2.2.1 and 2.2.2, respectively. Similar

to the ECoG protocol, the subject in the MEA protocol did not perform any behavioral

tasks, therefore we evaluated the artifact suppression performance by comparing the

PSD of cleaned data to that of the baseline. To rule out “over-cleaning”, we again

performed baseline control experiments and compared the baseline epoch before and

after cleaning in the time domain (RMSE) and frequency domain (PSD). Similar to

the ECoG data, we tested the performance of both artifact suppression methods on

an additional 100 baseline epochs, segmented from MEA data occurring outside of

stimulation periods. These tests and their results are detailed in Appendix C.

We then examined the MEA time series for the stimulation, PWNP-cleaned, ICA-

cleaned and baseline conditions in order to assess the signal quality after artifact

suppression. Similarly to the ECoG data, these conditions were analyzed in the

frequency domain for the worst-case electrode. Specifically, we calculated the PSDs

and interference indices across these conditions to account for the broadband nature

of the MEA stimulation artifacts. We also used the rank-sum test to identify those

frequencies exhibiting significantly different power distributions between the baseline

and cleaned data.

To characterize the artifact suppression results beyond the worst-case electrode, we
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calculated the frequency-averaged interference index for each non-saturated electrode

of the MEA. These interference indices were then spatially interpolated, color-coded

and mapped onto the coordinates of the MEA superimposed onto a 3D brain render.

Note that for Subject 5, brain images were not available. Instead, the location of the

MEA was estimated based on photographs of the implantation location taken during

surgery and aligned to a template brain using anatomical landmarks. To compare the

significance of these results across all electrodes and between PWNP and ICA,we used

a signed rank test to establish the statistical significance between conditions across all

electrodes.

Finally, in the absence of a behavioral task in the MEA protocol, we wanted to

evaluate the ability of both artifact suppression methods to retain action potentials

in the MEA data. Specifically, we identified an electrode exhibiting action potentials

during the baseline condition. We then counted the number of action potentials

occurring during the stimulation epochs for that electrode. After artifact suppression,

we calculated the fraction of retained action potentials for both the PWNP-cleaned and

ICA-cleaned data.

3. Results

3.1. EEG Artifact Suppression Results

Artifact suppression results for EEG data showed that both methods successfully

attenuated the artifacts, as evidenced by SIR improvements, while preserving the SNR.

Using the PWNP method, we estimated the dimension of the artifact subspace to be four

(d = 4, α̂ = 2.9) for Subject 1 and d = 7 (α̂ = 1.2) for Subject 2. For the ICA method,

3 of 19 converged components were identified as artifact components for Subject 1, and

3 of 15 were identified for Subject 2. The components comprising the artifact subspace

in PWNP and the artifact components in ICA all contained significant power at the

stimulation frequency (30 Hz). Figure 3 shows the change in the SNR (Equation 4)

and SIR (Equation 5) after applying each artifact suppression technique. As expected,

both methods resulted in SIR improvements that were statistically significant (a paired,

right-tailed, signed rank test; Subject 1, p = 0.00007 for both methods; Subject 2, p =

0.00007 for both methods). Comparing between methods, the ∆SIR was greater for the

PWNP method than for the ICA method for both subjects. For example, for Subject 1,

the best channel (C3) exhibited a ∆SIR of 47.2 dB for PWNP compared to 41.1 dB for

ICA (see Table 1). This table also shows the summary statistics for ∆SIR and ∆SNR

across all 19 channels for both subjects. Comparing the median ∆SIR values between

suppression methods, PWNP outperformed ICA by 7.04 dB in Subject 1 and 10.84 dB in

Subject 2. Furthermore, these performance improvements were statistically significant

for both subjects (paired, right-tailed, signed rank test; Subject 1, p = 0.00201; Subject

2, p = 0.0016). The spatial distribution of ∆SIR (Figure 4) further highlights these

results. Additionally, PWNP appeared to be the most effective on those electrodes
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Table 1. Change in SIR and SNR after suppressing artifacts in EEG data for Subjects

1 and 2. The maximum ∆SIR and ∆SNR correspond to the electrodes that exhibited

the largest SIR and SNR change upon artifact suppression. The median ∆SIR and

∆SNR are also reported with the median absolute deviation (MAD).

Subject 1 Subject 2

(dB) PWNP ICA PWNP ICA

max(∆SIR) 47.20 41.10 43.08 35.20

max(∆SNR) 4.41 3.51 5.13 7.75

median(∆SIR) 34.22±9.02 27.18±8.34 31.79±7.85 20.95±7.04

median(∆SNR) 0.18±1.02 0.59±0.84 -0.03±1.49 0.34±1.91

closest to the stimulation channel, which were the most severely affected by artifacts.

In comparison to the SIR changes, SNR changes were generally small (<1 dB). Statistical

analysis showed that the SNR improvement after PWNP was statistically significant for

Subject 1 (paired, right-tailed, signed rank test; p = 0.00258), but not for Subject 2 (p

= 0.14312). For ICA, both subjects had statistically significant improvement in SNR

(Subject 1, p = 0.00530; Subject 2, p = 0.00136). Note that SNR improvements are

not the primary objective of artifact suppression.

3.2. ECoG Artifact Suppression Results

Like with EEG data, both methods were able to remove artifacts in the ECoG

stimulation data. For the PWNP algorithm, we estimated the artifact dimension to

be d = 12 (α̂ = 1.1) for Subject 3 and d = 11 (α̂ = 1.1) for Subject 4. For the ICA

procedure, 10 of 18 components were identified as artifact components for Subject 3,

while 11 of 15 were identified for Subject 4. The components comprising the artifact

subspace in PWNP and the artifact components in ICA were nulled as explained in

Sections 2.2.1 and 2.2.2, respectively.

ECoG signals exhibited prominent artifacts during stimulation. Figure 5A shows

a representative segment of a stimulation epoch to illustrate this phenomenon. Despite

their broadband nature, these artifacts were substantially reduced by both PWNP

and ICA methods, examples of which are shown in Figure 5B and C, respectively.

Generally, the signal amplitudes upon cleaning were more similar to those of baseline

data (Figure 5D).

To illustrate the effectiveness of artifact suppression in the frequency domain,

Figure 6 shows example PSDs before and after cleaning from the worst-case electrodes.

Unsurprisingly, these were the electrodes closest to the stimulation channel that were

co-linear with the moment of the stimulation dipole [16, 18]. In comparison to the

baseline data, stimulation PSDs exhibited peaks at the stimulation frequency (50 Hz)

and its super-harmonics, as well as a broadband increase. Upon artifact suppression,

these artifact features were largely reduced and the PSDs were brought closer to the
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Figure 3. Plots of the change in SIR and SNR values upon applying PWNP/ICA

artifact suppression techniques for the EEG data for Subjects 1 and 2. Each color

corresponds to a different EEG channel. The median (∆SIR,∆SNR) point across

electrodes is indicated on each plot by a “+”. The SIR improved significantly for both

subjects, with the PWNP method outperforming the ICA method. Both methods

preserved the SNR, as evidenced by median ∆SNR≈0. A numerical summary of these

results is provided in Table 1.
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Figure 4. Maps of ∆SIR for both subjects for the PWNP-cleaned (A,C) and ICA-

cleaned (B,D) data. Black square (reference electrode), black circles (stimulation

electrodes). PWNP outperforms ICA for both subjects, with the most substantial

suppression occurring on the most contaminated channels (C3, Cz, C4). Hot/cold

spots away from electrodes are spatial interpolation artifacts due to sparse electrode

coverage.
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Figure 5. Representative ECoG time series from 18 channels of the right temporal

grid (RTG) of Subject 3 (see Figure 1). The stimulation channel (RTG14-15) is

omitted due to saturation. (A) One-second segment from the stimulation epoch. (B)

Same segment after PWNP artifact suppression. (C) Same segment after ICA artifact

suppression. (D) One-second segment from a baseline epoch occurring immediately

before the stimulation epoch. Note that the stimulation data is shown at an eighth of

the scale of the others.

Table 2. Frequency-averaged interference indices, Ī, (see Equation 7) and

corresponding standard deviation, σI , for stimulation, PWNP-cleaned and ICA-

cleaned conditions for worst-case electrode in ECoG data.

Subject 3 Subject 4

Stim. PWNP ICA Stim. PWNP ICA

Ī 0.399 0.089 0.108 0.403 0.080 0.199

σI 0.318 0.102 0.140 0.320 0.100 0.121

baseline. Furthermore, the PSDs of PWNP-cleaned data were generally closer to the

baseline in comparison to their ICA counterparts.

The interference index of the stimulation data exhibited peak values at the

stimulation frequency (50 Hz) and its super-harmonics, similarly to stimulation data

PSDs. Figure 7 illustrates this effect for the worst-case electrode. These peaks were

largely removed after artifact suppression, with the PWNP method outperforming ICA.

This was evidenced by PWNP achieving lower interference index values compared to

ICA. Summary statistics for these results are given in Table 2. Moreover, PWNP-

cleaned data had fewer frequencies with significant residual interference compared to

ICA-cleaned data (rank-sum test p<0.01).

To demonstrate the effectiveness of artifact suppression methods beyond the worst-

case electrode, we spatially mapped the interference indices (Figure 8). As expected,



Suppression of Cortical Electrostimulation Artifacts using Pre-whitening and Null Projection17

Hz

d
B

d
B

Subject 3

Subject 4

Figure 6. PSDs of ECoG signals under four different conditions from a worst-case

electrode from both subjects (RTG13 for Subject 3 and LFG13 for Subject 4, cf.

Figure 1). Solid lines represent the PSD averages taken over 10 subsections and shades

represent corresponding one standard deviation bounds.

the map corresponding to the stimulation data exhibited the highest values, especially

in the vicinity of the stimulation channel. Both artifact suppression methods effectively

reduced the interference indices across electrodes. Specifically, the interference indices

upon PWNP suppression became significantly smaller (paired, left-tailed, signed rank

test: Subject 3, p = 4.8×10−5; Subject 4, p = 1.1×10−4). Similar behavior was observed

after ICA suppression as well (Subject 3, p = 4.8 × 10−5; Subject 4, p = 1.1 × 10−4).

Consistent with our worst-case electrode analyses, we observed that PWNP generally

outperformed ICA, particularly on the electrodes closest to the stimulation channel.
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Figure 7. Interference indices calculated for worst-case electrodes from both subjects.

Filled-circle markers indicate frequencies with significant interference, as determined

by rank-sum test (p<0.01). The PWNP method achieved superior suppression results,

as it generally resulted in lower interference indices, as well as fewer frequencies with

significant residual interference.

Specifically, the PWNP method yielded lower interference indices across electrodes

(paired, left-tailed signed rank test; Subject 3: p=0.010495; Subject 4: p=0.000994).

Figure 9 shows the results for the baseline control experiment. Since baseline data

contained no artifacts, we expect artifact suppression methods to yield small RMSE

values between baseline and artifact-suppressed baseline data. For PWNP, the average

RMSE value across electrodes was 15.3±2.3 µV, which accounted for only 6% of the

pre-cleaning baseline voltage swing (256 µV). In contrast, approximately four times

higher RMSE values were obtained with the ICA method (68.8±27.4 µV), suggesting

that it imposed more significant signal distortions. To visualize these distortions,
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Figure 8. Frequency-averaged interference indices (Equation 7) were spatially

interpolated, color-coded and mapped to cortical surfaces. For the saturated

stimulation electrodes (white), the values were imputed to the highest value in the

map to preserve the continuity of the interpolation. (A,B) Interference indices

for stimulation data. (C,D) Interference indices for PWNP-cleaned data. (E,F)

Interference indices for ICA-cleaned data. Note that the stimulation electrodes were

saturated, so their value was imputed to the highest in the grid to preserve interpolation

continuity.
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Figure 9 also shows time domain baseline signals for a representative electrode before

and after artifact suppression. We selected the representative electrode as the electrode

exhibiting the RMSE closest to the median RMSE across the grid. As evidenced by

these examples, the PWNP method introduced much less distortion in the time domain

compared to the ICA method. We additionally characterized these post-suppression

baseline distortions in the frequency domain. Comparing the PSDs before and after

artifact suppression (signed rank test, p<0.01), we identified no frequencies exhibiting

significantly different power distributions after PWNP artifact suppression, while 6 (out

of 129) frequencies were identified for ICA. The PWNP method may have benefited over

the ICA method from the fact that the baseline data epoch in this control experiment

had been used to calculate the pre-whitening matrix, Σ
− 1

2
B , (see Equation 1). To rule

this out, we performed control experiments on additional baseline epochs (Appendix

B), while retaining the same PWNP and ICA parameters. Specifically, we found that

PWNP yielded an average RMSE that accounted for only 5.5% of the baseline voltage

swings. The distortions due to ICA were three times as high, with the average RMSE

value reaching 16.5% of the baseline voltage swing. In the frequency domain, we found

that PWNP on average yielded 1.9% of frequencies with significantly different power

distribution compared to 43.6% of the frequencies yielded by ICA. For a detailed account

of these results and supporting figures, the reader is referred to Appendix B.

The advantages of the PWNP artifact suppression method over its ICA counterpart

were retained with the simulated artifact data. Specifically, upon PWNP artifact

suppression, the residual signals generated an average RMSE accounting for 5.6% of

the baseline voltage range. Similarly to the baseline control experiments, the average

distortions due to ICA were three times as high (16.7%). Furthermore, PWNP on

average yielded 4.5% of frequencies with power distribution significantly different from

those of the corresponding ground truth signals. For ICA, this fraction was 46.5%, which

is also in line with the baseline control experiments. Appendix B provides a detailed

account of these results.

3.3. MEA Data Artifact Suppression Results

Artifact suppression evaluation for the MEA data yielded similar results as for ECoG

data, with the PWNP method generally demonstrating superior suppression results.

After excluding saturated electrodes (artifact amplitudes exceeding 8.7 mV) from both

MEAs, we used data from the remaining 54 channels (cf. Figure 2) to train the PWNP

and ICA algorithms. For the PWNP method, we estimated the artifact subspace

dimension to be d = 33 (α̂ = 1.2). For the ICA method, we identified 49 ICs as artifacts

(out of 54 converged components). The artifact subspace in PWNP and the artifact

components in ICA were nulled as explained in Sections 2.2.1 and 2.2.2, respectively.

Since most of the electrodes on MEA1 were saturated, we focus on results from MEA2.

Figure 10 shows a representative segment of the stimulation data from the worst-

case electrode on MEA2. Evidently, neural signals were dominated by extremely strong
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Figure 9. Baseline control experiment results for PWNP (Left) and ICA (Right)

methods. (Top) RMSE values (Equation 6) spatially interpolated, color-coded, and

mapped to MR-CT co-registered images of the ECoG grids from Subject 4. Color

bar range is from 0 µV to 256 µV (maximum absolute voltage of the baseline data).

(Middle) Representative baseline time domain examples before and after artifact

suppression (Bottom) Representative frequency domain examples (mean PSD) from

the same electrode before/after artifact suppression. Dashed lines indicate frequencies

where the power distribution significantly differed before and after artifact suppression

(signed rank test, p<0.01).
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Figure 10. (Top) A representative 50-ms segment of the stimulation epoch from the

worst-case electrode on MEA2, along with the same data after artifact suppression. To

preserve the scale, the stimulation data have been de-meaned and truncated. (Bottom)

A duration-matched baseline segment immediately preceding the stimulation data.

artifacts, whose amplitudes exceeded those of baseline signals by as much as two orders

of magnitude. This is in contrast to the ECoG artifacts, which were generally an order

of magnitude larger than the corresponding baseline signals (see Figure 5). Despite their

large amplitude and broadband power distribution, these artifacts were still substantially

reduced by both PWNP and ICA methods, bringing the signal amplitudes closer to those

of the baseline data.
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Figure 11. PSDs of signals under four different conditions from the worst-case

electrode (Electrode 73) of MEA2. Solid lines represent the PSD averages taken over 10

stimulation epochs and shades represent corresponding one standard deviation bounds.

(Top) Full PSD. (Bottom) Same PSD, zoomed to local field potential frequency range.

Figure 11 shows these representative signals in the frequency domain. The

stimulation data PSDs exhibited a broadband increase, as well as peaks at the

stimulation pulse train frequency (294 Hz) and its super-harmonics (589 Hz, 883 Hz,

1178 Hz, etc.). Note that these frequencies were rounded to the nearest whole number

due to the 1-Hz frequency resolution of the PSD. Both PWNP and ICA reduced the

artifact-related spectral features in the stimulation data and brought the resulting PSDs

closer to those of the baseline data. However, PWNP appeared to outperform ICA as

it produced data with less residual artifact.
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Table 3. Frequency-averaged interference indices, Ī, and corresponding standard

deviations, σI , for stimulation, PWNP-cleaned, and ICA-cleaned conditions for worst-

case electrode in MEA data.

Subject 5

Stim PWNP ICA

Ī 0.292 0.045 0.089

σI 0.253 0.052 0.071

The interference index of the stimulation data exhibited peaks at the stimulation

frequency (294 Hz) and its super-harmonics, similar to their PSD. Figure 12 illustrates

this phenomenon for the worst-case electrode. Both artifact suppression methods

reduced the artifact peaks, with PWNP generally outperforming ICA. This was

evidenced by PWNP achieving lower overall interference index values, for which

summary statistics are shown in Table 3. PWNP also yielded signals with fewer

significant residual interference frequencies in comparison to ICA (rank-sum test,

p<0.01). These advantages were especially evident in the local field potential range

(0-500 Hz).

To visualize the effectiveness of artifact suppression methods for the whole MEA,

we spatially mapped the interference indices (Figure 13). Similar to the ECoG results,

the map corresponding to the stimulation data exhibited the highest values. Likewise,

upon artifact suppression, these map values were significantly reduced (paired, left-

tailed, signed rank test; PWNP, p = 8.4 × 10−11; ICA, p = 8.4 × 10−11). Consistent

with our worst-case electrode analyses, we observed that PWNP outperformed ICA.

Specifically, the PWNP method achieved lower interference indices across electrodes

(paired, left-tailed, signed rank test, p=0.000131).

Figure 14 shows the results of the baseline control experiment. As with the ECoG

experiments, we expect artifact suppression methods to yield small RMSE values. The

average RMSE value across electrodes was 17.4±2.6 µV for the PWNP method, which

is approximately 5.4% of the pre-cleaning baseline voltage swing (325 µV). The ICA

method, on the other hand, yielded much larger RMSE values (40.9±15.5 µV), and in

turn, more significant signal distortions. Figure 14 shows time domain distortions for

representative baseline signals after artifact suppression. These representative signals

were taken from the electrode exhibiting the RMSE closest to the median RMSE across

the grid. Similar to the ECoG experiments, the distortions introduced by PWNP

were less prominent than those introduced by ICA. We also characterized these post-

suppression baseline distortions in the frequency domain. Specifically, by comparing

the PSDs before and after artifact suppression (signed rank test, p<0.01), we identified

162/15000 (1.1%) frequencies exhibiting significantly different power distributions after

PWNP artifact suppression. In contrast, 1153/15000 (7.7%) frequencies were identified

for ICA. To avoid potential performance bias towards the PWNP method, we performed
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Figure 12. Interference index for the worst-case electrode from MEA2. Solid-colored

lines are the interference index for the stimulation, ICA-cleaned, and PWNP-cleaned

conditions. Filled-circle markers indicate frequencies where power distributions are

significantly different from the baseline condition (rank-sum test, p<0.01). PWNP

generally exhibited lower interference indices, as well as fewer frequencies with

significant residual interference. (Top) Full bandwidth. (Bottom) Zoomed to local

field potential bandwidth (0-500 Hz).
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Figure 13. Interference indices spatially interpolated, color-coded and mapped

to estimated MEA2 locations. (A) Interference indices for stimulation data. (B)

Interference indices for PWNP-cleaned data. (C) Interference indices for ICA-cleaned

data. Note that electrodes 51 and 62 were saturated, so their values were imputed to

the highest in the grid to preserve the interpolation continuity.

control experiments on additional baseline epochs (Appendix C), while retaining the

same PWNP and ICA parameters (same procedure as ECoG baseline experiments).

After averaging performances across 100 baseline epochs, we found that PWNP yielded

an RMSE that accounted for only 4.9% of the baseline voltage swing. The distortions

due to ICA were twice times as high, with the average RMSE value reaching 9.5% of

the baseline voltage swing. These advantages were preserved in the frequency domain,

where we found that PWNP on average yielded 13.0% of frequencies with significantly

different power distribution compared to 28.2% of the frequencies yielded by ICA. The

reader is referred to Appendix C for more information regarding these results.

3.4. Action Potential Recovery in MEA Stimulation Data

In the absence of stimulation data containing controlled behavioral tasks, we sought

evidence for the PWNP method’s ability to preserve neural features in recorded data.

To this end, we observed stimulation data from an electrode containing action potentials

(Electrode 59) before and after artifact suppression. Across the ten stimulation epochs

a total of 135 action potentials were visually identified among the stimulation artifacts.

The representative time domain data segments shown in Figure 15 demonstrate the

ability of PWNP and ICA methods to selectively suppress the stimulation artifacts

while preserving action potentials. Both techniques had a 100% retrieval rate of the

observed action potentials.

4. Discussion

In EEG data contaminated with narrow-band artifacts, PWNP achieved substantial

artifact suppression (expressed as SIR) while preserving the underlying α-band
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Figure 14. Baseline control experiment results for PWNP (Left) and ICA (Right)

methods. (Top) RMSE values spatially interpolated, color-coded, and mapped to

estimated MEA2 electrode locations. Color bar range is from 0 µV to 325 µV

(maximum absolute voltage of the baseline data). (Middle) Representative baseline

time domain examples before and after artifact suppression. (Bottom) Representative

frequency domain examples (mean PSD, zoomed to local field potential band, 0-500

Hz) from the same electrode before/after artifact suppression. Dashed lines indicate

frequencies where the power distribution significantly differed before and after artifact

suppression (signed rank test, p<0.01).
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Figure 15. An example of action potentials in MEA data before and after application

of PWNP and ICA methods. (A) Baseline data from an electrode exhibiting

spontaneous action potentials (outlined in black). (B) Stimulation and PWNP-cleaned

data from the same electrode. Stimulation artifacts reached ∼3 mV amplitudes but

have been truncated to preserve scale. (C) The same data segment as in (B), comparing

the PWNP-cleaned and ICA-cleaned conditions.
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modulation (expressed as SNR). Specifically, PWNP effectively improved the SIR by a

median of 32-34 dB, while preserving the SNR (|∆SNR| ≤0.18 dB). Artifact suppression

as high as 44-47 dB was achieved on electrodes adjacent to the stimulation channel (C3

for Subject 1 and Cz for Subject 2). Compared to ICA, PWNP achieved superior artifact

suppression results, and these differences were statistically significant for both subjects.

On the other hand, ICA yielded slightly higher SNR improvements (|∆SNR| ≤0.59 dB),

which is not surprising given ICA’s ability to extract neural sources [48, 49]. However,

the primary objective of artifact suppression is SIR maximization, and we only used SNR

to measure whether artifact suppression compromised physiological information. If the

objective is SNR maximization, we contend that artifact suppression should be followed

by more appropriate SNR-enhancing methods, like supervised learning techniques [50].

Extending our analysis to broadband ECoG artifacts, we observed that PWNP

retained the ability to suppress artifact features. Specifically, on worst-case electrodes,

PWNP achieved a reduction of broadband artifact features, as indicated by a decrease

of the frequency-averaged interference index by 0.31-0.32. Similarly, at the fundamental

stimulation frequency and its super-harmonics, interference indices were reduced by

as much as 1.08-1.58. Additionally, upon PWNP artifact suppression, the fraction of

frequencies with significant residual artifact contamination was reduced from 108/129

(84%) to 27.5/129 (22%), averaged across Subjects 3 and 4. Our results generalize

beyond the worst-case electrode, as we observed the reduction in interference indices

across the whole grid. Similar to the EEG results, the electrodes in the vicinity of the

stimulation channel benefited the most from PWNP. On the other hand, given that

baseline data do not contain artifacts, we expect them to be unaffected by artifact

suppression. Therefore, we performed baseline control experiments and demonstrated

that the PWNP method did not impose severe distortions on these signals. On average,

<2% of the baseline signal frequencies were significantly affected by PWNP. These

spectral differences translated into 5.5% distortion in the time domain. Similar results

were obtained by applying PWNP to simulated artifact data, where on average 4.5% of

the frequencies had significantly different power from those of the ground truth, with the

corresponding time-domain distortions of 5.6%. When these analyses were performed

with ICA, the suppression results were inferior. Specifically, broadband suppression

resulted in frequency-averaged interference index reductions of only 0.20-0.29 at the

worst-case electrode, with reductions as high as 0.69-1.36 at the stimulation frequency

and super-harmonics. ICA suppression also yielded 66.5/129 (52%) frequencies with

significant residual artifact contamination, averaged across the two subjects. The

ICA method also caused more distortion to the baseline data, with an average time-

domain distortion of 16.5% and 43.6% of frequencies with significantly different power

distributions. The ICA performance drop was also apparent in simulated artifact data,

where on average 46.5% of the frequencies had significantly different power from those of

the ground truth, with the corresponding time-domain distortions of 16.7%. Collectively,

these results show that PWNP outperforms ICA on artifact-contaminated ECoG, and

does so without imposing significant distortion onto the baseline signals.
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Repeating the above analyses, we also demonstrated the ability of PWNP to

suppress broadband artifacts in MEA data. For a worst-case electrode, PWNP artifact

suppression achieved a reduction of the frequency-averaged interference index of 0.25.

Particularly, the reductions at the stimulation frequency and super-harmonics ranged

from 0.23 to 1.37. We also observed a decrease of the fraction of artifact-contaminated

frequencies from 11112/15000 (74%) to 934/15000 (6%). These worst-case electrode

results generalize, as we observed a significant reduction in interference indices across

the whole MEA. It is worth noting that PWNP suppressed artifacts while preserving

100% of the action potentials observed in the stimulation data. For baseline control

experiments, an average of 13.0% of the baseline signal frequencies were significantly

affected by PWNP. These spectral differences translated into 4.9% distortion in the

time domain. In contrast, ICA yielded 4957/15000 (33%) frequencies with significant

residual artifacts for the worst-case electrode. ICA broadband suppression achieved a

frequency-averaged interference index reduction of 0.20, with reductions of 0.16-1.17

at the stimulation frequency and super-harmonics. The baseline control experiments

also indicated that ICA altered the underlying neural signals, with an average time-

domain distortion 9.5%, which translated to 28.2% of frequencies with significant power

distribution difference. ICA did, however preserve the action potential features, similarly

to PWNP. Overall, PWNP again outperformed ICA according to multiple performance

criteria.

In addition to its superior performance, PWNP is also simpler and easier to

implement. Specifically, it takes advantage of stimulation artifacts being much stronger

than neural signals. This enables PWNP to group these high-energy features into the

top components, thereby easing the identification of the artifact subspace, as outlined

in Appendix A. In many practical applications, the amplitude of stimulation artifacts

can be orders of magnitude larger than those of neural sources. For example, for a typical

ECoG stimulation at 3.5 mA [10, 11] and a channel impedance of 1 kΩ [51], artifacts

may reach an amplitude of 3.5 V at the stimulation channel. Based on typical voltages

of ECoG signals (c.f. Figure 9), it follows that artifacts may need an attenuation of

>80 dB to bring their amplitude to or below the level of neural signals. This problem

is exacerbated by the proximity of motor and sensory cortices (primary targets for

BD-BCI applications), where the artifact attenuation due to tissue volume conduction

is insufficient. For example, our prior work demonstrates that artifacts that are an

order of magnitude higher than ECoG signals are found within ∼2 cm of a stimulation

channel for a range of stimulation amplitudes [18]. State-of-the-art, front-end artifact

suppression techniques may alleviate this problem, but they typically provide 30-40 dB

of attenuation [24, 52]. Therefore, it is likely that the assumptions set forth by PWNP

remain fulfilled, even with artifact suppression at the front-end. In theory, as long as the

magnitudes of stimulation artifacts exceed those of neural sources, the PWNP method

is expected to work (see Appendix A). In the unlikely situation where artifacts are

comparable to or weaker than neural signals, the PWNP method may fail to separate

the two subspaces. In this case, however, the presence of artifacts may not be a concern
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given their low amplitude.

In contrast to PWNP, ICA returns unsorted components, thus necessitating a

heuristic approach to identify the components that span the artifact subspace. This

problem is akin to feature selection in pattern recognition theory [53]. While there are

algorithmic approaches that guarantee the optimal solution [54], they are nonetheless of

combinatorial complexity. This problem is typically tackled by rank-ordering features

according to certain criteria and selecting a subset of features from this list [53], as we

have done here by ordering ICs according to SIR. Note, however, that this approach

may be suboptimal [55], in that a combination of components exhibiting the lowest SIRs

is not guaranteed to achieve the optimal artifact suppression result.

Additionally, since ICA-based artifact suppression imposed significant distortions

on artifact-free baseline data, we infer that the removed ICs contained both neural

and artifact features. To investigate this trade-off, we also performed a perturbation

analysis on the number of artifact ICs by adding or removing individual components.

Specifically, the set of artifact components was either reduced by removing components

or augmented by adding putative artifact components. This analysis indicated that

baseline distortions could be mitigated by discarding fewer ICs, at the expense of inferior

artifact rejection. Conversely, augmenting the set artifact ICs achieved superior artifact

suppression while resulting in more severe distortions. An apparent example of this

was observed in the MEA data, where an attempt to improve the artifact suppression

resulted in the loss of action potential features. A likely cause of these phenomena is that

broadband artifacts and neural signals may not be independent of each other. Therefore,

many components identified by ICA end up containing a mixture of artifact and neural

features. By suppressing these ICs, some of the neural features are invariably lost. On

the other hand, leaving them in fails to suppress artifact features. Conversely, PWNP

is not constrained by the stringent independence requirement. Instead, it alleviates

these issues by rank-ordering its components using energy and separating neural and

artifact subspaces based on a single, theoretically-justified threshold α, as explained in

Appendix A.

Unlike the EEG data, which had a labeled behavioral task, ECoG and MEA

data did not. This limitation was imposed by the nature of the ECoG and MEA

data collection. Specifically, ECoG data were collected as a part of Phase II epilepsy

evaluation, where it was neither justified nor practical to interfere with the clinical

procedure. On the other hand, MEA data were collected as a part of a sensory mapping

task [12], which solely focused on sensory responses. To address this concern, we verified

that artifact suppression did not remove neural features from ECoG and MEA data by

performing extensive baseline control experiments. Using ECoG data, we also generated

synthetic stimulation artifacts while preserving the spatio-temporal correlations in the

original signals. We then quantified the performance of artifact suppression against the

ground truth. We also demonstrated that action potentials were largely unaffected by

artifact suppression in the MEA data.

To demonstrate that our results generalize to real-time operation, both PWNP



Suppression of Cortical Electrostimulation Artifacts using Pre-whitening and Null Projection32

and ICA artifact suppression methods should ideally be tested within a cross-validation

framework. While this could be easily implemented in PWNP using standard linear

algebra tools, this procedure would be prohibitively time-consuming to perform in

ICA due to its reliance on a heuristic combinatorial search. Our baseline control

and simulated artifact experiments (Appendix B) demonstrate some generalization

capabilities of PWNP, although not in a true cross-validation manner. Therefore, our

future work will test the ability of PWNP to suppress stimulation artifacts in real

time. It should be noted that PWNP is amenable to efficient real-time implementation

as explained below. To train the algorithm, one would collect short data segments

during both baseline (stimulator off) and stimulation (stimulator on) conditions. These

epochs do not need to be contiguous and they do not need to be of the same duration.

From these data, the matrices ΣB and H can be estimated offline (following the steps

in Appendix A) and saved for real-time application. In the present study, a total of 10 s,

20 s and 120 s of data was sufficient to train these parameters for the ECoG, MEA, and

EEG signals, respectively. The real-time artifact suppression then reduces to matrix

multiplications (Equation 1), with XS being the most recently acquired real-time data

buffer. Being a purely spatial signal processing method, PWNP is independent of the

buffer size. Since PWNP does not impose substantial distortions to artifact-free data,

it could be added to the standard data acquisition pipeline. Alternatively, it could be

synchronized with the stimulator and switched on/off accordingly.

5. Conclusion

In this work, we present a novel stimulation artifact suppression algorithm based on

pre-whitening and null projection techniques (PWNP). We demonstrate its effectiveness

in suppressing various types of stimulation artifacts across a variety of neural signals,

including EEG, ECoG and MEA data. When compared to an ICA-based method,

considered to be the state-of-the-art, PWNP generally demonstrated superior artifact

suppression results. In conjunction with a straightforward real-time implementation,

these results suggest that the PWNP algorithm is a suitable method for real-time artifact

suppression in BD-BCI.
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Appendix A. Null Projection for Artifact Suppression

During stimulation, the measurements from n sensors can be modeled as:

XS = ASSS + ANSN + N (A.1)

where SS ∈ Rd×tS are the time-dependent moment magnitudes of d equivalent

stimulation dipoles (d < n), SN ∈ Rs×tS are the activities of s neural sources, and

N ∈ Rn×tS is background noise [40]. The columns of AS ∈ Rn×d and AN ∈ Rn×s are

the lead field vectors of the stimulation dipoles and neural sources, respectively.

If the stimulation dipoles are the strongest component in (A.1) most of the energy

of XS will be contained in a d-dimensional subspace spanned by the columns of AS.

This assumption holds in most practical applications, as the amplitude of artifacts

caused by stimulation dipoles are typically orders of magnitude larger than those of

neural sources. The stimulation artifacts can then be suppressed by null projection [40],

i.e., by projecting XS to the orthogonal complement of this artifact subspace. The

artifact suppression process may be hindered by strong spatial correlations present in

the artifact-free signal ANSN + N. These correlations may be caused by the physical

proximity of individual sensors and the correlated nature of background noise.

To remove these correlations, we employ the so-called dual-condition experimental

design [56], where we also collect data while the stimulator is turned off (baseline state):

XB = ANSN + N (A.2)

To improve the SNR and accuracy of an artifact subspace estimate [41], we calculate

the pre-whitening matrix from the baseline data: Σ
− 1

2
B = VBΛ

− 1
2

B VT
B. Here, ΣB ∈ Rn×n

is the covariance of XB, and VB ∈ Rn×n and ΛB ∈ Rn×n are its eigenvector and

eigenvalue matrix, respectively. Note that the pre-whitening matrix is well-defined since

XB ∈ Rn×tS is generally a full row-rank matrix (n � tS). Subsequently, we de-mean

and de-correlate the stimulation data:

X′S = Σ
− 1

2
B

(
XS − µS1T

)
(A.3)
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where µS is the time-average of XS, i.e., µS = 1
tS

∑tS
i=1 XS(i) ∈ Rn×1 and 1 ∈ RtS×1

is a vector whose entries are all 1. Since this transformation whitens the artifact-free

response in (A.1), the artifact subspace can be identified through the singular value

decomposition of X′S [40]:

X′S = USΣSVT
S = [Ud Uc

d]

[
Σd 0 0

0 Σc
d 0

]
VT
S (A.4)

The artifact subspace is spanned by the columns of Ud ∈ Rn×d which are the left singular

vectors of X′S corresponding to its largest d singular values (the diagonal of Σd). The

remaining n− d left singular vectors (columns of Uc
d) span the orthogonal complement

of the artifact subspace. In theory, such a decomposition is possible as long as the

magnitudes of stimulation dipoles exceed those of neural sources, so that the largest d

singular values in (A.4) indeed correspond to stimulation artifacts. Introducing a matrix

representation H = Uc
d and projecting data onto this subspace, i.e., HTX′S, will result

in artifact suppression, hence the name null projection. We can then reconstruct these

projected data in the original space followed by “coloring” and restoring the mean to

obtain:

Xclean
S = Σ

1
2
BHHTX′S + µS1T (A.5)

Equation (1) follows by combining (A.3) and (A.5).

In the presence of a single stimulation dipole, the theoretical dimension of the

artifact subspace is d = 1. In practice, d is likely to be higher due to imperfections in

the model (A.1). To accurately estimate it, we note that the non-artifact components

of X′S are expected to be uncorrelated and with a unit variance. Therefore, the smallest

n − d eigenvalues of its covariance matrix, SX , are expected to be ≈1. Since X′S is

a zero-mean signal, its (unbiased) covariance matrix is defined as SX = 1
ts−1X

′
s(X

′
s)

T.

After invoking (A.4), we have:

SX =
1

ts − 1
USΣSVT

S

(
USΣSVT

S

)T
=

1

ts − 1
USΣSΣT

SUT
S

where we have used the fact that VS is an orthogonal matrix (VSVT
S = I). Since US

is also an orthogonal matrix, the last equation becomes:

UT
SSXUS =

1

ts − 1
ΣSΣT

S =
1

ts − 1

[
Σ2
d 0

0 (Σc
d)

2

]

which represents the eigenvalue decomposition of the covariance matrix SX . Specifically:

UT
SSXUS = ΛS =

[
Λd 0

0 Λc
d

]
=

1

ts − 1

[
Σ2
d 0

0 (Σc
d)

2

]
where the diagonal of Λc

d contains the eigenvalues of SX corresponding to the non-

artifact components. From the last equation, it follows that Σc
d =

√
(ts − 1)Λc

d, and
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since the non-zero elements of Λc
d are ≈1, we expect the corresponding singular values

to be σ ≈
√
tS − 1. Conversely, the singular values corresponding to the artifact

subspace are those that satisfy σ >
√
tS − 1. To account for noise in the singular

value distribution, we determined d by counting the number of singular values that

satisfy σ > α
√
tS − 1, where α > 1. More elaborate techniques for determining d based

on information theoretic criteria can be found in [57].

Appendix B. ECoG Control Experiments

Appendix B.1. Baseline Data

In our baseline control experiments described in Section 2.3.2, the PWNP artifact

suppression method may have benefited over ICA in that the baseline data epoch had

been used to calculate the pre-whitening matrix, Σ
− 1

2
B , (see Equation 1). To rule this

out, we performed control experiments on additional baseline epochs, while retaining the

same PWNP and ICA parameters as trained on the original data. Specifically, from the

ECoG data collected from Subject 4, we segmented 100 five-second-long non-overlapping

epochs of data outside of the stimulation periods.

Figure B1 summarizes the results of PWNP and ICA suppression over these 100

baseline epochs. As with the original baseline epoch, we expect the artifact suppression

methods to yield small RMSE values. For PWNP, the grand average RMSE value

(across epochs and channels) was 26.3±8.1 µV, which accounted for only 5.5% of the

pre-cleaning baseline voltage swing (475 µV). Similar to the original baseline data (see

Figure 9), the ICA method produced three times as large RMSE values (78.6±33.6 µV),

accounting for a 16.5% distortion of baseline signals. To appreciate these distortions in

the time domain, Figure B1 also shows a representative example of baseline epoch for a

representative electrode before and after artifact suppression. As before, we selected the

representative electrode as the electrode exhibiting the epoch-averaged RMSE closest

to the median (across the grid) epoch-averaged RMSE. Consistent with the results

in Figure 9, the ICA method introduced much larger distortions in the time domain

compared to the PWNP method. Finally, we characterized these distortions in the

frequency domain, by comparing the epoch-averaged PSDs before and after artifact

suppression (signed rank test, p<0.01, Bonferroni corrected for multiple comparisons

across frequencies and channels). Averaging across channels, we identified 24.61 out

of 1280 (1.9%) frequencies exhibiting significantly different power distributions after

PWNP artifact suppression and 558.06/1280 (43.6%) frequencies after ICA artifact

suppression.

Appendix B.2. Simulated Artifact Data

From the original stimulation epoch from Subject 4, we identified individual artifacts by

performing a peak detection, constrained by the 50 Hz pulse frequency (20 ms inter-pulse
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Figure B1. Experiment results for PWNP (Left) and ICA (Right) methods for 100

baseline epochs. (Top) RMSE values (Equation 6) averaged over 100 epochs, spatially

interpolated, color-coded, and mapped to MR-CT co-registered images of the ECoG

grids from Subject 4. Color bar range is from 0 µV to 475 µV (maximum absolute

voltage across baseline epochs). (Middle) One-second segment of a representative

baseline epoch before and after artifact suppression (Bottom) Epoch-averaged PSDs

from the same representative electrode before/after artifact suppression. The reported

numbers indicate the fraction of frequencies where the power distribution significantly

differed before and after artifact suppression (signed rank test, p<0.01, Bonferroni

corrected for multiple comparisons across frequencies and channels). For clarity, the

dashed lines indicate only the subset of frequencies with significant power differences

across all channels.

period). To facilitate accurate estimation of artifact arrival times, we used data from the

electrode LFG13, which was closest to the stimulation channel (see Figure 1) and had

the largest artifacts. The arrival times were then propagated across channels, taking

advantage of the fact that artifacts are phase-locked [18]. In total, for the ∼5-second

stimulation epoch, 249 artifact events were detected. Short (15.6 ms) data segments

centered at each arrival time were then extracted and averaged over the 249 events to

construct an artifact template for each channel. We then generated a 50 Hz train of
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Figure B2. Generation of simulated artifacts demonstrated on the electrode closest to

the stimulation channel. (Top): A one-second segment of the original uncontaminated

baseline epochs from Subject 4. (Middle): The train of artifact templates overlaid onto

baseline data (note the different voltage scale). (Bottom): Time-domain examples of

artifact suppression results plotted alongside the ground truth baseline data.

artifact templates for each channel that superimposed it (see Figure B2) onto the same

100 baseline data epochs, as identified in the previous section. Note that this procedure

preserves the spatio-temporal correlations in the original ECoG data. An alternative

approach would be to generate a forward model for neuronal and artifact sources [58];

however, this model would closely match the assumptions of PWNP and ICA, which

could potentially positively bias the suppression results. Finally, we applied PWNP and

ICA artifact suppression methods to these simulated artifacts and performed the same

comparisons using RMSE and PSDs as we did with the baseline data.

Figure B3 summarizes the artifact suppression results over the 100 simulated

artifact epochs. For PWNP, the grand average RMSE value (across epochs and channels)

was 26.7±8.0 µV, which accounted for only 5.6% of the pre-cleaning baseline voltage
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swing (475 µV). Interestingly, these values are highly consistent with those obtained from

the baseline control experiments, suggesting that the chosen threshold α̂ = 1.1 precisely

delineates the artifact and neural subspaces. Similar to the baseline control experiments,

the ICA method produced three times as large RMSE values (79.5±34.0 µV), accounting

for a 16.7% of the baseline voltage amplitude. Figure B3 shows representative examples

of these distortions in the time domain for a representative electrode. As before, we

selected the representative electrode as the electrode exhibiting the epoch-averaged

RMSE closest to the median (across the grid) epoch-averaged RMSE. Consistent with

prior results, the ICA method introduced much larger distortions in the time domain

relative to the PWNP method. Finally, we characterized these distortions in the

frequency domain, by comparing the epoch-averaged PSDs before and after artifact

suppression (signed rank test, p<0.01, Bonferroni corrected for multiple comparisons

across frequencies and channels). After averaging across channels, we identified

57.33/1280 (4.5%) frequencies exhibiting significantly different power distributions after

PWNP artifact suppression and 595.67/1280 (46.5%) frequencies after ICA artifact

suppression.

Appendix C. MEA Baseline Control Experiments

Similar to the ECoG experiments, we also performed additional baseline control

experiments with MEA data. Specifically, from the MEA data collected from Subject

5, we segmented 100 one-second-long, non-overlapping epochs of data outside of the

stimulation periods. We then individually subjected these baseline epochs to both

PWNP and ICA artifact suppression with the same originally trained parameters.

Figure C1 summarizes the results. For PWNP, the grand average RMSE value

(across epochs and channels) was 20.4±2.4 µV, which accounted for only 4.9% of the

pre-cleaning baseline voltage swing (420 µV). In comparison, the ICA method produced

two times as large RMSE values (39.9±14.5 µV), accounting for a 9.5% distortion of

baseline signals. Figure C1 also shows a representative example of baseline epoch for a

representative electrode before and after artifact suppression. As before, we selected the

representative electrode as the electrode exhibiting the epoch-averaged RMSE closest

to the median (across MEA2) epoch-averaged RMSE. Consistent with the results in

Figure 14, the ICA method doubled the distortions in the time domain compared to the

PWNP method. Finally, we characterized these distortions in the frequency domain,

by comparing the epoch-averaged PSDs before and after artifact suppression (signed

rank test, p<0.01, Bonferroni corrected for multiple comparisons across frequencies and

channels). Averaging across channels, we identified 1956.61/15000 (13.0%) frequencies

exhibiting significantly different power distributions after PWNP artifact suppression

and 4236.85/15000 (28.2%) frequencies after ICA artifact suppression.
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Figure B3. Experiment results for PWNP (Left) and ICA (Right) methods for

100 simulated artifact epochs. (Top) RMSE values (Equation 6) averaged over

epochs, spatially interpolated, color-coded and mapped to MR-CT co-registered images

of the ECoG grids from Subject 4. Color bar range is from 0 µV to 475 µV

(maximum absolute voltage across baseline epochs). (Middle) One-second segment

of a representative baseline epoch before artifacts are overlaid and after the simulated

artifacts are suppressed. (Bottom) Epoch-averaged PSDs from the same representative

electrode before/after artifact suppression. The reported numbers indicate the fraction

of frequencies where the power distribution significantly differed before and after

artifact suppression (signed rank test, p<0.01, Bonferroni corrected for multiple

comparisons across frequencies and channels). For clarity, the dashed lines indicate

only the subset of frequencies with significant power differences across all channels.
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Figure C1. Experiment results for PWNP (Left) and ICA (Right) methods for 100

baseline epochs from MEA data. (Top) RMSE values (Equation 6) averaged over

epochs, spatially interpolated, color-coded, and mapped to the estimated location

of the MEA. Color bar range is from 0 µV to 420 µV (maximum absolute voltage

across baseline epochs). (Middle) Ten-millisecond segment of a representative baseline

epoch before and after artifact suppression (Bottom) Epoch-averaged PSDs from

the same representative electrode before/after artifact suppression, zoomed to the

local field potential band (0-500 Hz). The reported numbers indicate the fraction of

frequencies where the power distribution significantly differed before and after artifact

suppression (signed rank test, p<0.01, Bonferroni corrected for multiple comparisons

across frequencies and channels). For clarity, the dashed lines indicate only the subset

of frequencies with significant power differences across all channels.
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